
Chapter 6  

Loan Amortization and Funding Methods 

6.1. General features of loan amortization 

We have already seen in Chapter 5 that, given a discount law, the inverse 
problem of the computation of initial value of an annuity is an amortization, in the 
sense that the annuity’s installments are the amortization’s installment of a debt 
equal to its initial value. 

Having then clarified the general concept of loan amortization, we will consider 
in this chapter the classification and description of the most common amortization 
methods of a debt contracted at a given time. We will consider in sections 6.2, 6.3, 
and 6.4 the amortization of unshared loans (i.e. with only one lender, which is the 
creditor, and only one borrower, which is the debtor) at fixed rates and at varying 
rates. In the loan mortgage contract the borrower guarantees payment to the lender. 

The exchange law used will be that of discrete compound interest (DCI), because 
in this context we usually consider operations having pluriennial length and the 
calculation of interest is performed periodically when the borrower pays. 

In sections 6.8 and 6.9 we will consider shared loans (i.e. among a number of 
creditors, in the presence of quite a large amount of debt) at fixed rate. The need for 
the same conditions among many creditors leads to technical complications and 
problems in financial evaluations, that we have to consider.  
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In an unshared loan, assuming a discrete scheme for repayment1, we can 
distinguish between the following: 

a) only one lump-sum repayment of the principal at the end of the term:  
 a1) with only one interest payment at the end of the term, 
 a2) with periodic interest payment; 
b)  periodic repayments of the principal together with the accrued interests. 

The formulation will consider the scheme of annual payments: for different 
cases, it is enough to assume the used period as the unit measure, and introduce the 
equivalent rate. We will then indicate with i the rate per period and with n the 
number of periods.  

In case a1), operation ˆ O  is simple, consisting of the exchange between the 
principal C given by the lender in 0 and the amount M paid by the borrower in n as 
repayment of the debt and payment of all the accrued interests. M is obviously the 
accumulated value of C after n periods, obtainable using equation (3.24) for a fixed-
rate loan and equation (3.23) for loans with varying rates and given times. 
Therefore, ˆ O (0, C)U(n, M )  from the viewpoint of the lender. 

In case a2), still considering only one final repayment, the interest, which is 
always calculated on the initial debt, is paid at the end (or beginning) of each period 
and calculated at rate i (or respectively at the rate d). In the two cases the operations 
are written as 

 (0, C)U(1,Ci)U ...U(n 1,Ci)U(n,C(1 i))  (6.1) 

 (0, C(1 d))U(1,Cd)U ...U(n 1,Cd)U(n,C)  (6.1') 

Example 6.1 

Referring to a debt of €255,000 to pay back with the scheme in a1), after 5 years 
at the fixed rate of 6.50%, the final debt amount, together with interest, is  

D  =  255,000.1.0655 = 255,000.1.3700867 = €349,372.10. 

Using scheme a2) with delayed annual installments for the interest, for the given 
debt we have to pay €16,575.00 at the end of each of the first 5 years, adding at the 
end of the 5th year the repayment of the debt. Adopting, instead, advance annual 
installments for the interest, we have to pay €15,563.38 at the beginning of each of 
the first 5 years, with the repayment of the debt after 5 years. Case b) considers in 
general terms the gradual amortization, the form of which at fixed rate will be 

                                                 
1 An amortization in a continuous scheme, instead, would lead to consideration of a 
continuous annuity for the debt amortization. Such scheme is possible but has no practical 
relevance. 
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described in section 6.2. The periodicity of the installments is usually annual or 
semi-annual (but sometimes it is quarterly or monthly) and delayed2; less frequent 
are advance payments. 

6.2. Gradual loan amortization at fixed rate 

6.2.1. Gradual amortization with varying installments 

The gradual amortization, once the initial debt S, the per period rate i and the 
length (or number of periods) n are given, the installments (also simply named  
payments) Rh in the delayed case or hR  in the advance case (where h indicates the 
integer date of payments between 0 and n), must satisfy the constraint of financial 
closure expressed in the two cases by one of the equations in (5.23) where in the left 
side, S instead of v0 or 0V  is used, obtaining 

  S Rh 
h=1

n
(1 i) h   (6.2) 

 
1

h=0 (1 )n- h
hS R i

  (6.2') 

The amortization annuities are, in fact, in the two cases: 1
 ( , ) 
n

hh h R , 
1
0

 ( , ) 
n-

hh h R . 

The aforesaid installments, altogether equivalent to the initial debt, are divided 
into two amounts:  

– the “principal repaid”, ch in the delayed case or hC  in the advance case, that 
decreases the debt; 

– the “interest paid” ih in the delayed case or hI  in the advance case, which is 
a gain for the creditor and is proportional to the level of remaining debt (i.e. the 
outstanding loan balance, defined below)3. 

                                                 
2  In the practice of bank loans there can be a “pre-amortization” phase (see also the following 
footnote 3), from the day the loan is granted to the end of the first period, in which the debtor 
pays only the accrued interest and the amortization begins, the times of which are parts of a 
calendar year. 
3 To avoid the remaining debt overcoming the initial loan during the amortization, something 
that the lender cannot allow (due to the consequent lack of guarantees), the principal 
repayments must never be negative, i.e. the installment are at least at the level of the amount 
of the interest paid. It is in particular verified the equality “installments = interest paid” ie the 
absence of principal repayments, during an interval of “pre-amortization” in the initial phase. 
The creditor can allow such facility in special cases, for instance when the investment 
financed by the loan implies a delay in the return and then an initial lack of liquidity for the 
debtor. In such cases, if the pre-amortization lasts for m periods, then R1 =...= Rm = Si and the 
real amortization is included in the following n-m periods. Observe that the amortization with 
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By definition, the principal repayments must satisfy the constraints of elementary 
closure expressed by 

 
1

1 0  ;  n n
h hh hC S C S  (6.3) 

 As time increases during the gradual amortization, it is necessary to account at 
the internal due dates (= end of periods) the outstanding loan balance (or 
outstanding balance, or simply balance) Dh and the discharged debt  Eh = S - Dh.   

 Let us consider the delayed gradual amortization. This results in  

 D0 = S   ;  Dh S Ckk 1
h

;  (h=1, ...,n) (6.4) 

and then Dn = 0  owing to the 1st part of (6.3). 

We have already seen that in section 5.4 amortization as the inverse problem of 
calculating the initial value (IV) of an annuity with varying installments, that the 
solution is not unique, having n-1 degrees of freedom: we have only one constraint 
on the n unknowns Rh.  In order that the number of such degrees be zero, so as to 
have a unique solution, we need to introduce other n-1 constraints that are linearly 
independent. This can be carried out in an infinite number of ways: one of which is 
the imposition of installments in arithmetic or geometric progression, as was shown 
in section 5.5. However, in general, we can fix the installments under the constraint 
in (6.2) or the principal repayments under the constraint in the 1st  part of (6.3), 
taking into account the needs of both parties to the contract.  

 The solution can be found recursively from the system of 3n equations 

 (h 1,...,n)

Dh Dh 1 Ch

Ih i Dh 1

Rh Ch Ih

 (6.4') 

in the 3n unknowns Dh , Ih , Rh , (h = 1, ..., n) with the initial condition D0 = S4. 

                                                                                                                   
only one final repayment of type a2 can be considered as a total pre-amortization until the end 
of the loan. 
4 This means that, taking into account the initial condition D0 = S, if the installments Rh are 
given, I1 is found from the 2nd part of (6.5), C1 from the 3rd part, D1 from the 1st part, and we 
repeat such a procedure by increasing h. Instead, if the principal repayments Ch , (h = 1, ..., 
n), are given, it is found I1 from the 2nd part of (6.5), D1 from the 1st  part, R1 from the 3rd part, 
and we repeat such a procedure by increasing h.  
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From (6.4') the recursive relation is found          

 Dh  =  Dh-1 (1+i) – Rh  (6.5) 

that gives the following alternative for the calculation of Rh: 

 Rh   =  Dh-1 (1+i) - Dh  = (Dh-1  - Dh) + i Dh-1 (6.5') 

Both (6.5) and (6.5') have an expressive financial meaning referring to the 
dynamic of amortization.5  

It is convenient, for calculation in case of assignments or advance discharge, to 
give the reserve defined in Chapter 4. At the rate i (which can be the one in the 
contract or a different one for the evaluation in k) and at the integer due date h the 
retro-reserve is 

 Mh S(1 i)h Rk (1 i)h k
k 1
h

 (6.6) 

while the pro-reserve is 

 Wh Rk (1 i) (k h )
k h 1
n

 (6.6') 

We can easily verify that, due to the fairness of the amortization operation 
expressed by (6.2),6 using for the valuation the loan rate i, Mh = Wh  = Dh follows.7 

                                                 
5 Let us verify that (6.6) is equivalent to (6.2), i.e. implies the financial closure, and let us 
give the closed expression for the balances. From (6.6) we find: Dh-1 = (Rh+Dh)v and when 
using it for decreasing values of h the following is obtained: Dn-1 = Rnv; Dn-2 = (Rn-1+Dn-1)v 

= Rn-1 v + Rn v2; ... ; Dn-h = (Rn-h+1+Dn-h+1) v = Rn h kv k
k 1
h

;....; S = D0 = (R1+D1) v = 

Rkvk
k 1
n and vice versa. We can also write: Dh = Rh kvk

k 1
n h , which gives the remaining 

debt at the hth due date as a function of the installments following Rh.   
6 The fairness can be controlled in an alternative way, but which is equivalent, from the final 
debt. In fact it can soon be seen that if Dn = 0 is satisfied, the operation consisting of the loan 
of S amortized with the sequence {Rh} with delayed due dates is fair at rate i. Otherwise, 
while the pro-reserve is zero due to the absence of remaining obligation, the retro-reserve 
would not become zero and the final spread Dn, positive or negative, would make the 
operation favourable respectively for the borrower or for the lender. 
7 The retrospective and prospective reserves, evaluated in whichever integer time h [0,n], 
maintain their meaning of evaluation of the net obligation before and after h, even if in h it is 
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Furthermore, bare ownerships and usufructs, as defined in Chapter 4, at the 
integer times h and with discontinuous formation of interests, being 

Ik iDk 1 i Css k
n , are given by 

(h 1,...,n)
Ph Ck (1 i) (k h )  

k h 1
n

 

Uh Ik (1 i) (k h ) = i (1 i) (k h ) Css k

n

k h 1
n

k h 1
n

 (6.7) 

If we use the CCI regime, it would be possible to define the reserves at each 
intermediate time between two due dates in succession, to calculate in the exact way 
the assignment or discharge value for whichever time t =k+s (where k = integer part 
of t; s = decimal part of t). We obtain 

M(t)  =  Mk (1+i)s   ;  W(t)  =  Wk  (1+i)s 

Let us consider briefly the variation in an advance gradual amortization. 
Analogously to the delayed case, the solution can be obtained considering 
recursively the system of 3n equations   

  

1

1( 0,..., 1)  
h h h

h h

h h h

D D C

h n I d D

R C I
 (6.4") 

in the 3n unknowns dh+1 (= outstanding balance after h and until h+1) , hI  , hR  , (h 
= 0, ..., n-1) with the usual initial condition D0 = S. 

 

                                                                                                                   
adopted for the evaluation of a rate i different from that established at the inception of the 
loan. However, in such a case we lose the equality between prospective reserve and 
outstanding balance and also that between prospective reserve and retrospective reserve 
because, if the sequence of the installments Rh is unchanged, (6.2) does not hold any more 
and the fairness of the whole operation is lost. The same considerations hold for the case of 
advance amortization, considered later. 
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Figure  6.1. Plot of delayed amortization 

From (6.4") we obtain  

hR  = Dh - Dh+1 v (6.5") 

from which the recursive relation results:  

 Dh = Dh+1 (1-d) + hR  (6.5''') 

being Dn = 0 for the 2nd of (6.3).               

Furthermore, at the delayed loan interest i=d/(1-d) and at the due integer date h 
the retro-reserve is 

 
1
0  (1 ) (1 )hh h k

h kkM S i R i  (6.6") 

while the pro-reserve is 

  
1 ( )(1 )n k h

h kk hW R i  (6.6''') 

and due to (6.2') we obtain the fairness.  

Furthermore, bare ownerships and usufructs at the integer times h and with 

discontinuous formation of interests, as 
1

1 1
n

k k ss kI dD d C , are given by 
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1 1( )
1
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(1 )

n k h
h kk h

n nk h
h sk h s k

P C i
h n

U d i C
 (6.7') 

 

Figure 6.2. Plot of advance amortization 

Debt amortization schedules 

In the operative practice an amortization schedule is summarized in a table in 
which for each payment is reported on the same row: 1) period, 2) outstanding 
balance at the beginning of the period, 3) principal repaid, 4) interest paid, 5) 
installment, 6) outstanding balance at the end of the period. In the case of delayed 
installments the following table is obtained, for h=1,...,n.   

(1) (2) (3) (4) (5) (6) 

… … … … … … 
h Dh-1 Ch Ih = i Dh-1 Rh = Ch+Ih Dh 
… … … … … … 
      

Table 6.1. Amortization schedule    

Here, it is enough to consider only one of the columns (2) or (6), which coincide 
except for the displacement of one period. This is easy to change in the case of 
advance installments, in which case h hI d D . 
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Example 6.2  

What we discussed regarding a gradual amortization with delayed or advance 
payments is numerically explained here. Consider the delayed or advance 
amortization of a debt of €90,000 in 5 years at the annual delayed rate i = 5.50% 
with principal repayment given by:  

1 0 5 4 16,000 C C C C  ;  2 1 4 3 3 219,000 ; 20,000C C C C C C . 

The elementary closure is verified, as it can be easily observed. 

By applying (6.4') for the delayed case and using D0 = €90,000, the following 
schedule is recursively obtained, by using a calculator or an Excel spreadsheet, as 
explained below 

Debt = 90000 Rate i = 0.055 Length = 5 

h   Dh-1   Ch   Ih   Rh   Dh 
1 90000.00 16000.00 4950.00 20950.00 74000.00 

2 74000.00 19000.00 4070.00 23070.00 55000.00 

3 55000.00 20000.00 3025.00 23025.00 35000.00 

4 35000.00 19000.00 1925.00 20925.00 16000.00 

5 16000.00 16000.00 880.00 16880.00 0.00 

Table 6.2. Example of gradual amortization with delayed payments 

The Excel instructions are as follows. B1: 90000; D1: 0.055; F1: 5; using the 
first two rows for data and column titles, from the 3rd row we have: 

column A (year):  A3: 1; A4=A3+1; copy A4, then paste on A5 to A7 
column B (outstanding balance ante): B3: = B1; B4: = F3; copy B4, then paste on 
       B5 to B7; 
column C (principal repaid):  from C3 to C7: (insert given data); 
column D (interest paid):  D3: = D$1*B3; copy D3, then paste on D4 to D7; 
column E (installments):  E3: = C3+D3; copy E3, then paste on E4 to E7; 
column F (outstanding balance post): F3 = B3-C3; copy F3, then paste on F4 to F7;  

For the advance case, being d = 5.21327%, by applying (6.4"), and using D0 = 
€90000, the following schedule is obtained by using a calculator or an Excel 
spreadsheet, as explained below. 

Debt = 90000 Rate d = 0,052133 Length = 5 
h   Dh C¨h I¨h R¨h Dh+1 
0 90000.00 16000.00 3857.82 19857.82 74000.00 
1 74000.00 19000.00 2867.30 21867.30 55000.00 
2 55000.00 20000.00 1824.64 21824.64 35000.00 
3 35000.00 19000.00 834.12 19834.12 16000.00 
4 16000.00 16000.00 0.00 16000.00 0.00 

Table 6.3. Example of gradual amortization with advance payments 
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The Excel instructions are as follows. B1: 90000; D1: 0.055; F1: 5. Using the 
first two rows for data and column titles, from the 3rd row we have: 

column A (year):   A3: 0; A4=A3+1; copy A4, then paste on A5-A7; 
column B (balance ante): B3: = B1; B4: = F3; copy B4, then paste on B5 to B7; 
column C (principal repaid):  from C3 to C7: (insert given data);   
column D (interest paid):  D3: = $D$1*F3; copy D3, then paste on D4 to D7; 
column E (installment):  E3: = C3+D3; copy E3, then paste on E4 to E7; 
column F (balance  post):  F3: = B3-C3; copy F3, then paste on F4 to F7. 

For the manual calculation of the polynomials in v in (6.2) and (6.2') it is enough 
to alternate multiplications by v = 0.9478763 and installment additions:  

calculating: (R5v R4 )v R3 v R2 v R1 v  in the delayed case, and 

4 3 2 1 0( )R v R v R v R v R   in the advance case, 90,000 is obtained. 

When stopping the calculation after k installments from below, the backwards 
outstanding balances D5-k  are obtained, i.e. 16,000; 35,000; 55,000; 74,000.  

Exercise 6.1 

We have to discharge a loan of 45 million monetary units (MU) for the financing 
of the building of an industrial plan which, owing to long assembly time, will give 
net profits only 2 years and 6 months from the inception date of the loan. 
Furthermore, having the possibility of increasing in time the accumulation of capital 
for the repayment, the parts agree that, after a pre-amortization with 5 semi-annual 
installments, the loan is amortized in 7 years with delayed semi-annual installments, 
increasing in arithmetic progression at the rate of 5% per half-year. Annual rates of 
8% for the pre-amortization and 7% for the amortization, are agreed. Calculate the 
pre-amortization and amortization installments in the two alternatives: 

a) the rates are effective annually, 

b) the rates are nominal annual 2-convertible, 

using for the evaluation the effective amortization rate.  

A. Assuming the half-year as unit measure and using S = 45,000,000;  R = base 
of installment ; D = ratio = 0.05 R ; i1 = semiannual effective pre-amortization rate; 
i2 = semiannual effective amortization rate; the equivalence relation must hold (at 
the amortization rate): 

S = S i1 a5 |i2
+ (1+i2)-5[R a14 |i2

+ D (Ia14 |i2
] 
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For case a):  

i1 = 0.0392305;  i2 = 0.0344080; (1+i2)-5 = 0.8443853; a5 |i2
= 4.5226323; 

a14 |i2
= 10.9640169; (Ia14 |i2

 = 76.2254208; then the relation becomes 

     45.106 = 1765372.4.5226323  + 0.8443853 R [10.9640169 + 0.05.76.2254208] 

then: R = 2,966,957.60; D = 148,347.90. Therefore: 
– pre-amortization installments: S i1  = 1,765,372.50; 

– amortization installments: R1 = 3,115,305.50 ; R2 = 3,263,653.40 ; R3 = 
3,412,001.30 ; ...; R14 = 5,043,828.20. 

In case b): 
 i1 = 0.04;  i2 = 0.035; (1+i2)-5 = 0.8419732; a5 |i2

= 4.5150524; a14 |i2
= 

 = 10.5691229;   

214|i(I )a = 75.8226691;  then the relation becomes 

    45.106  = 1800000.4.5150524  + 0.8419732 R [10.5691229 + 0.05.75.8226991] 

then: R = 2,966,983.60; D = 148,349.20. Therefore: 
pre-amortization installments: S i1  = 1,800,000.00; 
amortization installments: R1 = 3,115,332.80; R2 = 3,263,682.00; R3 = 

3,412,031.20 ; ...; R14 = 5,043,872.40. 

6.2.2. Particular case: delayed constant installment amortization 

Having developed the general case, it is enough to consider briefly the more 
diffused cases of the amortization of unshared loans at fixed rates. Let us start from 
the classical case, in which a loan of amount S is paid back in n periods (annual or 
shorter) with constant delayed installments R calculated on the basis of DCI law at 
the rate per period i. The equivalence constraint is the particular case of (6.2), as it is 
given on the basis of the symbols defined in Chapter 5, by: 

  S  = R an |i    from which     R  = S n |i (6.8)    

The 2nd part of (6.8) gives univocally the amortization installment as a function 
of S, n, i. We obtain here a particular case of system (6.4') by using Rh = R. 

An important property of such amortization, also called French amortization, 
that justifies the name of progressive amortization, consists of the fact that the 
principal repayments increase in geometric progression (GP) with ratio (1+i). 

Proof. Particularizing (6.6) for consecutive values h and h+1, it is found that: 

R = Dh-1 (1+i) - Dh  ;  R = Dh (1+i) - Dh+1 . 



222     Mathematical Finance 

Subtracting term by term, we find  

0 = (Dh-1 - Dh) (1+i) - (Dh - Dh+1) 

from which 

 Ch+1 = Ch  (1+i)  ,   h = 1, …, n-1 (6.9)  

As Ch+1/Ch  is independent from h, this proves the evolution of Ch in GP. 

Starting from the value of the installment given in (6.8) we easily obtain the 
following French amortization schedule8. 

 
 Debt  (S)              Rate  (i)  Length  (n)  Installment  (R = S n |i) 

---------------------------------------------------------------------------------------------------- 
Period (h)  Principal (Ch) Interest (Ih)          Balance (Dh) 

---------------------------------------------------------------------------------------------------- 

 1 R vn R(1 - vn) R an-1 |i   

 2 R vn-1 R(1 - vn-1)  R an-2 |i   
  .. .......... ................. ............ 
 h R vn-h+1 R(1 - vn-h+1)  R an-h |i    
 .. .......... ................. ............ 
 n-1 R v2 R(1 - v2)  R a1 |i   
 n R v R(1 - v) 0 

=========================================================== 

Table 6.4. French amortization 

In fact, applying (6.4') recursively with Rh = R, it results in: 

I1 = R i an |i  = R(1 - vn) ; C1 = R - I1 = Rvn ; D1 = R an |i  - Rvn = R an-1 |i ,  

I2 = R i an-1 |i  = R(1 - vn-1) ;C2 = R - I2 = Rvn-1 ; D2 =  R an-1 |i  - Rvn-1 = R an-2 |i ;  
etc. The GP behavior of Ch is confirmed.  

                                                 
8 It is easy to calculate the principal repaid, the interest paid and the outstanding balance as 
functions of the debt S. Due to (6.9) and the 1st part of (6.3), we find: 

S C h C1 (1 i)h 1
h 1
n

h 1
n

C1 sn | i    

i.e.: C1= S n |i , Ch = S n |i(1+i)h-1  = S n |iv
n-h+1 ; Dh Ch kk 1

n h  S an -h | i /an | i  ; 

I h i Dh 1  = S (1-vn-h+1) / an | i . 
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Exercise 6.2  

Make the schedule of a French amortization with annual installments for a debt 
of €255,000 to pay back in 5 years at the rate i = 0.065 (same data as Example 6.1).  

A. The constant annual installment of amortization for (6.8) is R = 
€61,361.81 and the schedule can be obtained using D0 = 255,000 and using the 
recursive system: Ih = iDh-1, Ch = R-Ih, Dh = Dh-1-Ch (h=1,...,5). The following 
amortization schedule with annual due date is obtained, using an Excel spreadsheet: 

Debt = 255000.00  Rate i = 0.065 

Length = 5   Installment = 61361.81 

Year 
h 

        Interest     
         Ih 

         Principal  
       Ch           

      Installment 
       Ih+Ch 

Balance    
Dh 

1 16575.00 44786.81 61361.81 210213.19 

2 13663.86 47697.95 61361.81 162515.24 

3 10563.49 50798.32 61361.81 111716.93 

4 7261.60 54100.21 61361.81 57616.72 

5 3745.09 57616.72 61361.81 0.00 

Table 6.5. Example of French amortization 

The Excel instructions are as follows: the first 3 rows are used for data and 
column titles; B1: 255000; E1: 0.065; B2: 5; E2: = B1*E1/(1-(1+E1)^-B2$B$2.  

From the 4th  row:  
column A (year):   A4: 1; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (interest paid):  B4: = E1*B1; B5: = $E$1*E4; copy B5, then paste on 

B6 to B8. 
column C (principal repaid):  C4: = $E$2-B4;  copy C4, then paste on C5 to C8. 
column D (installment): D4: = B4+C4; copy D4, then paste on D5 to D8. 
column E  (balance):   E4: = B1-C4; E5: = E4-C5; copy E5, then paste on E6 

to E8.  

Calculation of usufructs and bare ownerships in French amortization 

Sometimes it is necessary to distinguish in the attribution to the entitled parties 
the values due to interest and due to principal transaction, i.e. usufructs and bare 
ownerships (see Chapter 4). As known, we can make two different hypotheses on 
the formation of interest that brings about the evaluation of usufruct: 

a) continuous formation of interest, with intensity ; 

b) periodic formation of interest at the end of the period at the per period rate 

i e 1. 
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Case a) gave rise to the general formule for  
˜ U (t)  and  

˜ P (t) = W(t) -  
˜ U (t)  

developed in section 4.3 and valid in the exponential financial regime. 

In case b), given that interest is formed with impulsive flow only at the time of 
payments, the usufruct U(t) is simply the sum of the discounted interest payments, 
and the bare ownership P(t) is the sum of the discounted principal repayments. 

The distinction between cases a) and b) can be applied to a generic financial 
operation with discrete distribution of payments and the differences in results have 
little relevance. To illustrate, let us develop the comparison between  

˜ U (t)  and U(t), 
evaluated according to the same , in the particular case of remaining payments of 
an annuity with constant periodic installments R, in the case of fair operation: it is 
enough to consider the French amortization of an amount S, with the constraint (6.8) 
between S and R. Then: 

a) with continuous formation of interest, at a generic time t=h+s , with 
0<s<1, the following is obtained: 

      
˜ U (t) = R(k s)e (k s)

k=1

n h
Re s [ (Ia)n-h |i  - s an-h |i] = 

 
    
=

R
id

(1 ds )e s 1 d(n t) e ( n t)  (6.10) 

From (6.10), with s  0, we find  
˜ U (t)  at integer time h, obtaining 

 
    
˜ U h =

R

id
1 1 d(n h) e (n h )  (6.10') 

The bare ownership   
˜ P (t)  is easily obtained as the difference between W(t) = 

Whe s and (6.10); 

b) with periodic formation of interest, it is meaningful to calculate usufruct and 
bare ownership only at the integer time h. Using the loan rate, we obtain 

 Ph Ckvk h (n h)Ch (n h)Rvn 1 h
k h 1
n

 (6.11) 

As W(k) = Dk, the usufruct is obtained as difference: 

 Uh = Dh - Ph = 
 

R

i
1 1 d(n h) vn h  (6.12) 
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and from the comparison with (6.10') it results in: 

 ˜ U h  =  Uh /d (6.13) 

Then, for the French amortization case, the spread of the usufructs is small, 
giving a value   

˜ U (h)  slightly bigger than Uh and proportional to the coefficient /d.   

6.2.3. Particular case: amortization with constant principal repayments  

In such a form of amortization with delayed installments9, also called uniform or 
Italian, given the debt S, the number of periods n and the per period rate i, as a main 
feature the principal repayments Ch , (h 1,...,n) , are constant in time, and then the 
outstanding balances Dh linearly decrease. The following recursive relations hold, 
with the initial condition D0 = S: 

 (h 1,...,n)

Ch Dh 1 Dh
S

n
Ih iDh 1

Rh Ch Ih

 (6.14) 

from which we obtain the following closed forms according to S: 

 

    

(h 1,...,n)
Ch

S
n

         ;                  D h
n h

n
S

Ih
n h 1

n
S i ;  Rh =

1+ ( n - h +1 )i

n
S  

   (6.14') 

Equation (6.14) enables us to perform the Italian amortization schedule. 
Furthermore, with the periodic formation of interests, the bare ownership Ph and the 
usufruct Uh at the loan rate i are: 

 Ph  = 
S

n
an-h |i ;  Uh  =  

S

n
 (n - h - an-h |i) ;  (h = 1,...,n) (6.15) 

                                                 
9 The amortization with constant principal repaid and advance installments, as well as  
advance interest paid, is seldom used. 
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Exercise 6.3 

Prepare the schedule for the Italian amortization with annual installments for a 
debt of €255,000 to be paid back in 5 years at the rate i = 0.065 (the same data as in 
Exercise 6.2). 

A. By applying (6.14) and using Excel, the following amortization schedule with 
annual due dates is obtained:   

Debt  = 255000.00  Rate  = 0.065 

Length = 5    

Year Principal Interest Installment Balance 

1 51000.00 16575.00 67575.00 204000.00 

2 51000.00 13260.00 64260.00 153000.00 

3 51000.00 9945.00 60945.00 102000.00 

4 51000.00 6630.00 57630.00 51000.00 

5 51000.00 3315.00 54315.00 0.00 

Table 6.6. Example of Italian amortization 

The Excel instructions are as follows:  B1: 255000; E1: 0,065; B2: 5; using the 
first 3 rows for data and column titles, from the 4th row we have: 

column A (year):   A4: 1; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (principal repaid):  B4: = B$1/B$2;  copy B4, then paste on B5 to B8. 
column C (interest paid):      C4: = E1*B1; C5: = $E$1*E4; copy C5, then paste on 

C6 to C8. 
column D (installment): D4: = B4+C4; copy D4, then paste on D5 to D8. 
column E (outstanding balance): E4: = B1-B4; E5: = E4-B5; copy E5, then paste on 
  E6 to E8.   

6.2.4. Particular case: amortization with advance interests10 

For the general case of advance interest, let Jh be the advance interest paid for 
the period (h,h+1), Ch be the delayed principal repaid for the period (h-1,h) and Rh

*  
be the total amount paid in h, (h=0,1,...,n). Comparing with (6.4') and (6.4") we 
have: 

Jh  = v Ih+1 = d Dh   (h=0,1,...,n-1) ;  Jn  = 0 (6.16) 

 0*

1

  ,                                        =0

1h
h h h h h

J S d if   h
R

J C D vD = R ,    if   h = ,...,n
 (6.16') 

                                                 
10 This is a classic case, even if seldom used, of amortization. 
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The operation is fair at the rate i11.  

In the particular hypothesis in which the advance installments following the first, 
made up only by interest paid in 0, are equal to the constant R*, the amortization is 
called German; in such a case the delayed principal repaid increases in geometric 
progression with ratio (1+i), as in the French amortization. Therefore, the first is C1 
= S n |i  and R* = S n|i . 

Proof: If Rh
* R*, (h=1,...,n), by writing the relation Kh = Kh-1(1+i)- R* for 

consecutive values of h and subtracting, this results for h=1,...,n-1:  

Ch+1 = Dh- Dh+1 = (1+i)(Kh-Kh+1)  = (1+i)2 (Kh-1-Kh) = (1+i)(Dh-1-Dh) = (1+i)Ch. 

Exercise 6.4  

With the same data as in Exercise 6.2, apply the German amortization with 

constant annual installment Rh
* R* (h 1) to obtain the amortization schedule. 

A. By applying (6.16), (6.16’), and using Excel, we can obtain the amortization 
schedule at the annual due date. We find: C1 = 44,786.81;  R* =  57,616.72. The 
following schedule is the result:  

     Debt  = 255,000  Delayed rate  = 0.065 

Length = 5 Advance rate = 0.061033 57,616.72 

h      Ch Dh    jh      R*h 

0 0.00 255000.00 15563.38 15563.38 

1 4478.81 210213.19 12829.91 57616.72 

2 47697.95 162515.24 9918.77 57616.72 

3 50798.32 11171.93 6818.40 57616.72 

4 54100.21 57616.72 3516.51 57616.72 

5 57616.72 0.00 0.00 57616.72 

Table 6.7. Example of German amortization 

The Excel instructions are as the follows. We use the first three rows for titles, 
data and basic calculations; B1: 255000; E1: 0.065; B2: 5; D2: = E1/(1+E1) (= 
advance rate) ; E2: = B1*C2/(1-(1+E1)^-B2) (= installment at h=1,...,5); from the 

4th row, we have:  
                                                 
11 Proof: using Kh = Dh - Jh  = vDh  ,(h=0,1,...,n), this results in: Kh = Kh-1(1+i) - Rh

* , (h = 
1,...,n). From here, given that Kn = 0, we obtain 

* ( 1) *
1 0 01 1

(1 ) (1 ) (1 )  
n nh h h

h h hh h
R i K i K i K S R ,     i.e. 

S = Rh
* (1 i) h

h 0
n . Then the installments Rh

*  amortize fairly at the rate i the debt S. For 

h 1 they coincide with the advance installments Rh 1
*  paid the previous period. 
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column A (time):         A4: 0; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (principal repaid): B4: 0; B5: = B1*E1/((1+E1)^B2-1); B6: 
        =B5*(1+$E$1); copy A5, then paste on A6 to A8. 
column C (outstanding balance): C4: = B1;  C5: = C4-B5; copy C5, then paste on 

C6 to C8. 
column D (interest paid):  D4: = D$2*C4; copy D4, then paste on D5 to D8. 
column E (installment):   E4: = B4+D4; copy E4, then paste on E5 to E8. 

6.2.5. Particular case: “American” amortization 

To introduce American amortization let us consider a variation of the form a2) of 
amortization as seen in section 6.1. In such a form the debtor could have difficulties 
in preparing a large amount as a lump-sum final payment; as guarantee for the 
creditor, it could be appropriate to agree that the debtor makes constant periodic 
payments into a bank account so that at the end of the loan the debtor has the 
amount to be paid back.  

In the resulting scheme, the accumulation fund to pay back the debt is called a 
sinking fund (see section 6.4) and such a structure gives rise to American 
amortization that provides for three economic agents: 1) the creditor or lender; 2) 
the debtor or borrower; 3) the bank (or other financial institution) managing the 
funding. 

For a debt of amount S to be paid back in n periods, we have to fix a reward rate 
i, i.e. the rate of the loan, which rules the periodic interest paid by the borrower, 
different from (and usually higher than) the accumulation rate i*, which rules the 
interest earned by the borrower on the funding12. On the basis of such elements: 

– the debtor at the end of each period pays to the creditor the accrued interest Si 
and pays into the sinking fund the periodic funding installment S n |i*  in order to 
reach at maturity the amount S that the bank, instead of the debtor, will pay to the 
creditor; then the debtor against the initial cash inflow (0,+S) pays 

U h 1
n (h, R(i,i*)) , where  

 R(i ,i*)  = S (i + n |i*) (6.17)  

– the creditor, due to (6.1), has the cash-flow 

(0, S)U(1,Si)U ...U(n 1,Si)U(n,S(1 i))  

– the bank manages in the interval of n periods the sinking fund at the rate i* 
with periodic inflow S n |i*   and the final outflow -S.   

                                                 
12 In fact, it is well known that, for obvious market reasons, for a private operator against a 
bank the allowed rates are lower than charged rates. 
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The role of the bank as a broker allows the different structure of the cash-flow 
following the inception, for both lender and borrower. For the lender, case a2), of 
one lump-sum repayment, holds, while for the borrower we have periodic constant 
payments, as in progressive amortization. It is then useful to find the cost rate z for 
the debtor of the American amortization in the usual hypothesis: i > i*. z is the 
solution of the equation 

n |z =  i + n |i*                                   (6.18) 

obtained making the constant installment of the French amortization at rate z equal 
to that of the American amortization and then dividing by S. The problem leads back 
to the search of the internal rate implied by the cost of a constant annuity (see 
section 5.2). 

Observe that the right side of (6.18) can be written: (i-i*) + n |i*  (alternative 
formula for the American installment of the unitary debt) and then (6.18) becomes: 

n |z = (i-i*) + n |i*                                      (6.18') 

If i>i*, n |z > n |i* results, and then, n |z being an increasing function of z, 
we obtain: z>i*; if instead i<i*, we obtain: z<i*. Furthermore, n |z being a 
decreasing function of z, if i>i*, recalling (5.9) we obtain  n |z = i  + n |i* > i + 

n |i  = n |i   and then, due to the behavior of n |z, we have: z>i; if instead i<i*, 
using analogous developments we obtain: z<i.  

In conclusion, z is external (and not internal mean) to the interval between i and 
i*, being the only alternative between i*<i<z (usual case) and i*>i>z (exceptional 
case). In the usual case the American amortization is more expensive for the 
borrower than the French at rate i, because the borrower must accumulate the 
amount for the repayment at the earned interest rate i*<i . 

American amortization with equality of rates   

It is appropriate to consider the case i=i* in the American amortization13. With 
regard to the cost rate z for the debtor, i*=i=z results. In addition, for (5.9), the 

                                                 
13 We have has to mention that the “geographical” terms for the different amortization that 
are usually used to differentiate are not always unique; it can be preferred to use technical 
adjectives (progressive and uniform instead of French and Italian). de Finetti (1969) (cited for 
deeper investigation, together with Volpe di Prignano (1985)) uses “English” amortization for 
the scheme, which we here call “American”, with two different rates and “American” when 
the rates are the same.    
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periodic payment S(i + n |i) of the debtor coincides with S n |i, payment that he 
would have on the basis of the French amortization at the rate i.  However, this is the 
same as the total payment that he would have if he pays the interests Si to the lender 
and accumulates the repayment capital S at the same rate i agreed for the payment. 
This situation can be realized if the bank14 that manages the sinking fund at the rate 
i*<i is not present. It could be the same lender, if a financial institution gives loans at 
the rate i, to operate at the reciprocal rate i with the borrower for a deposit operation 
as guarantee for the loan. In such a case the American amortization with sinking 
fund is managed by the lender, because (5.9) is substantially reduced to the 
progressive amortization at the rate i. 

However, this is not the case for the formal aspects. If the sinking fund at rate i is 
not managed by the lender, or it is but with separate accounting until maturity, then 
the periodic payment S n |i for the sinking fund is not “principal repaid”, because it 
does not reduce the debt that always remains at the level S, but “accumulation 
amount”; in the same way Si is not French “interest paid” but is constant “reward 
amount”. However, if the accumulation payments are accounted periodically at the 
rate i to the lender to reduce the debt, so that at the due date h it becomes 
San-h |i /an |i , a sinking fund does not arise and we lead back to installment S n |i 
decomposition in principal repaid and interest paid of a progressive amortization,15 
varying with h and given by  

Ch S n |i (1 i)h 1, Ih S n |i (1 vn h 1) . 

In such cases, the American amortization does not hold. 

Exercise 6.5  

We have to amortize the amount S = 35000 in n = 10 years with the sinking fund 
method with two different rates; i = 7.2% for debt repayment, i *a

 = 3.6% in case a) 

and *
bi = 4.7%  in case b) for accumulation. Calculate the delayed annual payment 

R(i,i*) for the borrower and the constant rate z solution of (6.18) in the two cases. 

A. On the basis of (6.17), the annual payment is given: 

– in case a) by  R(0.072; 0.036) = 2520.00 + 2969.69 = 5489.69     

– in case b) by  R(0.072; 0.047) = 2520.00 + 2821.86 = 5341.86 

then being the amount in the sinking fund equal to 2969.69 and 2821.86 in the two 
cases. For the calculation of the cost rate z, we can use the numerical methods 

                                                 
14 See de Finetti (1969). 
15 Recall that in such amortization the principal repaid is S n |i  only for the 1st period, after 
that it increases in GP while the interest paid decreases proportionally to the outstanding 
balance. 
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described in section 5.2 to obtain exact results through iterative methods until 
convergence, or with lower approximation if we use the linear interpolation; 

– in case a), using equation: 10 |z  = 5489.69/35000 = 0.1568483 and a financial 
calculator with: [n] = 10; [pv] = -35000; [pmt] = 5489.69; [fv]=0; comp[i]; we 
obtain ˆ z  = 9.14969%. With the linear interpolation on (9%; 9.25%) the results are: 

10 |9%  = 0.1558201; 10 |9.25%  = 0.1575389 ; then   

 
10282

0,09  0.0025 0.0914955 
17188

z  

We can also apply the classic iteration method, using Excel starting from z0 
z 0.0914955. Since the equation 10 |z= 0.1568483 has the form g(z)=g0, with 

g(z)= 10 |z , g0 = 0.1568483, we can go to the canonical form f(z)= z using f(z) = 

z 10 |z /g0. However, the iteration process on f diverges, resulting 
in: f ' (z ) =1.4400328>1. We then have to apply the transformation, analogous to 

that seen in case B of Example 4.3: h(z)=[f(z) -mz]/[1-m], where h(z)= z  is 
equivalent to f(z)= z, using m = f ' (z ) . Starting from z0 = z , the following 

expansion, rapidly converging to ˆ z , is obtained. 
 

 [g0,z0,f'(z0)] = 0.15684830 0.09149550 1.44003280 

k zk G(zk) f(zk) h(zk) 
0 0.09149550 0.15684730 0.09149492 0.09149683 

1 0.09149683 0.15684821 0.09149678 0.09149694 

2 0.09149694 0.15684829 0.09149694 0.09149695 

3 0.09149695 0.15684830 0.09149695 0.09149695 

4 0.09149695 0.15684830 0.09149695 0.09149695 

Table 6.8. Calculation of cost rate by iteration 

The Excel instructions are as follows. The first two rows are used for data and 
titles; A1: 10 (= length); C1: 0.1568483 (= 10 |z ); D1: 0.0914955 (= z ); E1: 
1.44003280 (= f ' (z ) ); from the 3rd row: 

column A (step k);  A3: 0; A4: = A3+1; copy A4, then paste on A5 to A7; 
column B (approximate rate zh);   B3: = D1; B4: = E3; copy B4, then paste on B5 to 
B7; 
column C (g(zk)); C3: = B3/(1-(1+B3^-A$1); copy C3, then paste on C4 to C7; 
column D (f(zk));  D3: = B3*C3/C$1; copy D3, then paste on D4 to D7; 
column E (h(zk)); E3: = (D3-E$1*B3)/(1-E$1); copy E3, then paste on E4 to E7; 
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– in case b), the solving equation is: 10 |z   = 5341.86/35000 = 0.1526246; 
using the financial calculator with: [n]=10; [pv]=-35000; [pmt]=5341.86; [fv]=0; 
comp [i], we obtain z = 0.0853193. With the linear interpolation on (8.5%; 8.75%) 
the results are: 10 |8.5% =  0.1524077; 10 |8.75%= 0.1541097; then 

      z 0.085
2169

17020
0.0025 0.0853186  

 By using the Excel spreadsheet, it is sufficient to change the rate i*.  

6.2.6. Amortization in the continuous scheme 

A gradual amortization scheme that is widely used for theoretical aims is 
produced using a continuous annuity. 

Let us consider briefly such a case, assuming a continuous flow (t) of payments 
covering interest, used to amortize in a temporal interval I(t1) from time 0 to t1 the 
amount S. It is not restrictive to assume for simplicity that S=1 (otherwise it is 
enough to multiply the results by S). In addition, let us assume a financial law 
strongly decomposable with intensity (t), that, as known, is a function only of the 
varying time t (in particular (t)=  if the exponential law is assumed). Using: 

 (t) = (z)dz
0
t

      ,    t I(t
1
)  (6.19) 

(t) is the natural logarithm of the accumulation factor from 0 to t. With such 
positions, the flow (t) can be fixed varying in the interval I(t1), but must satisfy the 
constraint of financial closure: 

 (t)e ( t)dt 1
0
t1

 (6.20) 

If (t) =  constant and (t) =  constant, due to (5.16) and (6.20), 

   
1/ at1|i

( )

 (6.20') 

holds, with extension of the meaning of the symbol 
 
at1|i

( )  if t1 is not integer.   
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In addition, let us define:  

– c(t) = amortization flow (for the principal repayment) at time t;  

– j(t) = interest flow (allowed for the borrower) at time t;  

– B(t,t1) = discharged debt at time t; 

– D(t,t1) = 1 - B(t,t1) = outstanding balance at time t;  

– A(t,t1) = initial value of the payments of the borrower made from 0 to t.  

Such quantities are linked by the following relations, of trivial interpretation, that 
determine them completely: 

   (t) c(t) j(t)      ,    t I (t1)  (6.21) 

   
c( t)dt 1

0

t1
 (6.22) 

   B(t,t1) c(z)dz
0
t

      ,   t I (t1)  (6.23) 

   D(t,t1) c(z)dz
t
t1     ,    t I (t1)  (6.24)  

 1 1( )  1 ( , ) ( )      ,    t ( )j t B t t t tI  (6.25) 

   A(t,t1) (z)e (z )dz
0
t

      ,     t I (t1)  (6.26) 

The value M (t, t1)= 1 A(t, t1) e (t) represents the retrospective reserve (or 

retro-reserve, at credit for the lender) at time t with the meaning defined in Chapter 

4. In addition,  W (t, t1) = (z)e
( )d

t

z

dz
t
t1  expresses the prospective reserve (or 

pro-reserve). Maintaining in  t I (t1) the decomposable financial (t) initially 

adopted that assures the validity of (6.20), i.e. the fairness of the amortization 

operation, the following equalities hold:  

 M (t,t1)  = W (t,t1)  = D(t,t1)      ;  
 t I (t1)  (6.27) 

then from (6.20) follows 

1t(t) [ ( )- ( )]
1

t 1
1 ( , ) = ( ) e dz    ,    t ( )z tA t t e z I t    

and D(t,t1)  is also the amount which can be fairly cashed in t instead of the 

payments with flow { (t)} in the interval (t, t1) 16.  

                                                 
16 In the continuous scheme the observations in footnote 7 on the lack of inequality between 
the prospective reserve, the outstanding balance and the retrospective reserve calculated in 
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6.3. Life amortization 

6.3.1. Periodic advance payments       

So far we have analyzed the debt amortization methods in case of certainty, then 
through annuities certain, not considering randomness in the repayment of the loan 
or on the interest payment. This is assuming that, in the event of the borrower dying, 
his heirs or other people must enter into and fulfill his obligations. 

We can take into account the risk of death of the borrower and the difficulty for 
his heirs to pay back the loan, excluding, due to the contract, the continuation of the 
repayment in case of death of the borrower and then establishing for the borrower 
the debt amortization through a temporary life annuity of n years (= life of the loan). 
In such a way the debt is discharged by means of a life amortization17 and the 
contract becomes stochastic, as with an insurance contract: the financial equivalence 
is obtained only as average, i.e. it has an actuarial nature. 

We have to take into account the uncertainty on the borrower’s survival, the 
probability of which is considered to depend only on his age x at the inception date 
of the amortization. This is obtained by replacing the financial discount factors 
(1+i)-h by the demographic-financial ones hEx

18.  

                                                                                                                   
t I(t1) remain valid, when at such a time an interest intensity in I(t1) different from 
the intensity initially fixed is used, maintaining unchanged in I(t1) the flow . In fact, 
in such case, (6.20) does not hold. 
17 For a better understanding of life amortization see Boggio, Giaccardi (1969) and also 
Volpe di Prignano (1985). 
18 We recall here that – with the symbols used in actuarial mathematics and assuming the 
discrete time scheme, starting from a demographic table of survival {lx} as a function of age 
(integer) x of a generic member of the community – the survival probability for h years of a 
person aged x is introduced and it is indicated with h px  resulting in h px lx h / lx ; in 
particular for surviving one year we put px  1px . In addition, considering the financial 

discount factor (1 i) h  for h years at the annual rate i, we introduce the value 

h Ex h px (1 i) h  which is called demographic-financial (or actuarial) discount factor and is 
the mean present value of the unitary amount payable within h years only in case of the 
survival of a person aged x, i.e. the amount that it is fair to pay with certainty today, at age x, 
to receive the unitary amount within h years only in case of survival. It is obvious that 
0 Ex 1 and we use 1Ex Ex . Also, we introduce, for a person aged x, the mean present 

value of a unitary life perpetuity-due or -immediate, denoted respectively by xa or ax , and 

also of a unitary life annuity-due or -immediate for n years, denoted respectively by / n xa  or 

/ n ax . Such perpetuities or annuities give the unitary annual amount until death or at most for 
n years. This is,  obviously: 
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Let us describe the operation with integer length n at fixed rate for the initial debt 
D0  = S, incepting at time 0, with the borrower aged x (integer). 

To discharge the loan the borrower pays a periodic life annuity-immediate, in 

particular annual, n-temporary with varying installments , ,z x n S , payable at times z 

= 0, 1, n-1, referring to the periods (z, z+1). For the congruity of the amortization, 
the constraint of actuarial equivalence 

 
1

, ,0  n
z x n S z xz E S  (6.28) 

has to be satisfied. Equation (6.28) generalizes (5.23) of Chapter 5. Therefore the 

sequence , ,z x n S  can be chosen with n-1 degrees of freedom19.  

 We can immediately verify that by the installment , ,z x n S  (or briefly: z , 
omitting x,n,S) the borrower pays:  

1)  the advance principal repaid , ,z x n Sc  (or briefly:  zc ); 

2)  the advance financial interest paid dDz+1 on the outstanding balance  Dz+1 in 
z+1; 

3) and also – and here is the difference of the life amortization compared to the 
certain amortization – the insurance natural premium for the year (z,z+1). Recalling 
that v=(1+i)-1=1-d and using: qy = 1-py = 1-l(y+1)/l(y) (= death probability between 
ages y,y+1), such a premium is given by vqx+zDz+1, proportional to the outstanding 
balance Dz+1 that the borrower will not discharge in case of his death at the year 
(z,z+1), leaving such duty to the lender, which in this aspect acts as insurer.20  

The three installment’s components make it possible to understand how the life 
amortization can be interpreted as a normal gradual amortization together with an 
insurance policy in case of the death of the borrower, which lasts for the length of 
the loan, and with varying capital given by the current outstanding balance, the 
premium of which is an addition of the financial installment.  

                                                                                                                   
1 1

0 1 0 10

 ( 0);   ;  ;  ;
n n n

n x x k /n x h x /n x h x x h x x h x
h h h hk

E E n a E a E a E a E
 

and for k<n results in: /n x  /k x k x /n-k x+ka  = a + E  a . 
19 The inequality constraints that can be introduced for the non-negativity of the principal 
repayments do not reduce the number of degrees of freedom, because such a decrease holds 
only by the equality constraints. 
20 If the lender does not manage the insurance himself, he can transfer the premium to an 
insurance company that accept the same technical bases to cover the risk. 
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We can define as actuarial interest paid for the year (z,z+1), indicating it with 

, ,z x n Sj  (or briefly:
 zj ), the amount  [dDz+1 + vqx+zDz+1] = (1- Ex z )Dz+1, the sum 

of the amounts defined in points 2) and 3) above. Therefore, as in the certain case, 
the installment is divided into principal repaid and interest paid, but the interest paid 
is actuarial. 

A more precise argument leads to the conclusion that the two components in the 
expression for

 
', "i i

z zj j , i.e. dDz+1 and vqx+zDz+1 , are antithetic with respect to 
the rate: in the first, the rate is at debt for the borrower; in the second, it is at credit. 
If due to market law we keep them separate, indicating them with i' and i", (i' >i"), 
then the actuarial interest amount is      

', " 1 1
11 (1 ') (1 ")i i

z x z zj i i q D  

We obtain ', "i i
z zj j if i‘=i”. Therefore, analogously to what happens for the 

American amortization, indicating with x the cost rate for the borrower, the result is:  
x >i' >i". This scheme, which leads to further complications, is not discussed 
further.     

To better clarify, let us consider the dynamic aspect of the life operation, 
assuming as already fixed the principal repayments zc , which are under the 
elementary closure constraint      

 
1
0

n
zz c S  (6.29) 

– in the first year the actuarial interest paid is 0j (1- Ex )D1, where 

1 0 0D D c , and 0 0 0 10 ... xj D E Dc ; 
– in the second year the development, starting from the debt  D1, is repeated; 

we obtain: 1 1 2(1 )xj E D , where  

2 1 1D D c , and 1 1 1 1 1 2... xj D E Dc ; 

– and in general, due to: 1z z zD D c  and z  = zc  + zj , we obtain for the 
year (z,z+1), where z+1  n, 

 1(1 )z x z zj E D 1z z x z zD E D .21 (6.30) 

 If instead the installments z  under constraint (6.28) are fixed in advance, then 
for the actuarial equivalence z = 0,1,...,n-1, (6.28) is generalized in  

                                                 
21 These formulae generalize (6.5) and (6.6'''), which hold in the absence of death. In fact, if 

constant, 1,  zz zl p , results. 
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1  n

z k k z x zk zD E  (6. 31) 

By obtaining zD  and Dz 1 from (6.31) it is immediately verified that (6.30) is 
satisfied for z , and also for zj , given by definition 1z z zD Dc . Therefore 
the components of z  are obtained from 

 1z z zc D D    ;     1(1 )z x z zj E D  
22

 (6.32) 

The life amortization with advance installments schedule has in the row relative 
to the period (z,z+1), (z=0,...,n-1), the following elements 

– payment time:      z 

– principal repaid:     zc  

– discharged debt (after payment in z):  1 0
z

z kkB c  

– outstanding balance (after payment in z):  
1

1 1
n

z kk zD c   

– actuarial interest paid    1(1 )z x z zj E D  

– installment     1z z z z x z zj c D E D  

Making successive substitutions on Dz+1 in the expression for z  for z=0,...,n-1 

and taking into account z Ex Ex kk 0
z 1

 we obtain: 

1
0 0  k

z z x k x kD S E E D , 

from which, due to k=n, (6.28) follows.    

The expression 

 
1
0  

 
k

z z xz
k

k x

S E
M

E
 (6.33) 

can be interpreted as retro-reserve at time k of the life amortization operation from 0 
to n, extending what is seen in Chapter 4 to the mean values obtaining, in the 

                                                 
22 Note that: ( ) (1 )z z x z z z x z z x z zD E D c E c E D . Therefore, z  is the 

weighted mean of zc and Dz . In addition, in the particular case  where z=n--1, as Dn = 0, 

1 1 1n n nD c  results, and then 1 0nj , in accordance with the fact that for the period 
(n-1,n) both the financial interest and the insurance premium are zero. 
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actuarial sense an insurance retro-reserve. In fact, such a formula gives the 
difference between the expected supplies of the lender and the borrower between the 
dates 0 and k, evaluated actuarially at time k. Instead, the insurance pro-reserve, 
considered as the difference between the expected obligations of the borrower and 
the lender (the latter are absent, because the lender’s supply occurs only at the 
inception of the loan) between the dates k and n, evaluated actuarially at time k, is 
given by  

 1   n
k z z k x kz kW E  (6.33') 

Maintaining in k (0,n)  the actuarial base {i, lx}  initially adopted that ensures 
the validity of (6.28), i.e. the actuarial fairness of the operation of life amortization, 
Mk = Wk = Dk k  hold, taking into account (6.28) and the fact that Dk is the 
amount in k that finds a fair counterpart in the payments of z  (z = k,...,n-1).23

  

If the life amortization is carried out with constant installment z , for (6.28) it 
must be / /z n xS a  and the outstanding balances are given by  

 / /
/ /

/

    S /  n x z x
z n z x z n x

n x z x

a aS
D a a

a E
 (6.31') 

Equation (6.32) is still applied for the calculation of the principal repayments and 
interest payments. 

Exercise 6.6 

We have to make a life amortization of €95,000 with advance annual 
installments for 10 years at rate i = 4.50% on a borrower aged 42 years. Calculate 
the amortization schedule on the basis of principal repayments assigned. 

A. The survival probability is found on suitable tables for an age x = 42. We can 
apply the formulations on footnote 18 and in (6.30), using a calculator or an Excel 
spreadsheet. The values E42+z are calculated and the principal repayments for z = 0, 
1, ..., 9, the sum of which is 95000, are assigned. Then we find the discharged debts 
and the outstanding balances for 10 years, and also the actuarial interest payments 
and the advance installments. With both procedures the following schedule is found, 
with obvious meaning:  

                                                 
23 Due to its decomposability the simplification effects of the actuarial law that leads to the 
discount k Ex  and accumulation 1/ k Ex  factors are obvious. Extended for the retro-reserve 
and pro-reserve in actuarial sense, the considerations of footnote 16 if at time k  are adopted 
the technical bases {i,l(x)}different from the ones initially used to prepare the life 
amortization . 
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 Debt = 95000  Rate = 0.045  Length = 10 

z l42+z E42+z cz Bz Dz jz Installment 

cz+jz 
Installment 

(6.30) 
0 96400 0.955230 8700 0 95000 3863.62 12563.62 12563.62 

1 96228 0.955128 8650 8700 86300 3484.32 12134.32 12134.32 

2 96046 0.954975 9800 17350 77650 3054.94 12854.94 12854.94 

3 95849 0.954761 9600 27150 67850 2635.15 12235.15 12235.15 

4 95631 0.954486 9300 36750 58250 2227.90 11527.90 11527.90 

5 95386 0.954189 10100 46050 48950 1779.76 11879.76 11879.76 

6 95112 0.953879 9700 56150 38850 1344.42 11044.42 11044.42 

7 94808 0.953647 9750 65850 29150 899.24 10649.24 10649.24 

8 94482 0.953302 9200 75600 19400 476.32 9676.32 9676.32 

9 94123 0.953105 10200 84800 10200 0.00 10200.00 10200.00 

10 93746   95000 0   
total   95000     

Table 6.9. Example of general life amortization 

The Excel instructions are as  follows. The 1st row contains data: C1: 95000; F1: 
0.045; I1: 10. The 2nd row is for column titles.  The values for the year z are in the 
row z+3 and are as follows: 

column A (time).   A3:  0 ; A4: = A3+1; copy A4, then paste on A5 to A13; 
column B (l42+z).  from B3 to B13: demographic data l42,...,l52 
column C (E42+z).  C3: = B4*(1/(1+F$1))/B3; copy C3, then paste on C4 to C12; 

column D ( zc ).  from D3 to D12; principal repayments; D14:= SUM(D3:D12) 
 (= C1 to control); 
column E (Bz).    E3:  0; E4: = E3+D3; copy E4, then paste on E5 to E13; 
column F (Dz).    F3: = C1; F4: = F3-D3; copy F4, then paste on F5 to F13; 

column G ( zj ).   G3: = (1-C3)*F4; copy G3, then paste on G4 to G12; 

column H ( z = z zc j ).  H3: = D3+G3; copy H3, then paste on H4 to H12; 

column I  ( z  from (6.30)). I3: = F3 -F4*C3; copy I3, then paste on I4 to I12. 

Exercise 6.7 

Calculate an advance life amortization with the same data as in Exercise 6.6 for 
the debt amount, length, rate and the borrower data, but with constant installments. 
Calculate the installment amount and make the amortization schedule.    

A. The survival probability is found on suitable tables for an age of x=42. 
Applying the formulae in footnote 17 and in (6.31) and (6.32), and using an Excel 
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spreadsheet, where the debt  is in C1 and the rate is in E1, the following schedule, 
divided into two parts, is set up. 
 

Debt    = 95000 Rate   = 0.045    Length =10 

z l42+z E42+z zE42 za42 10-za42|z 
0 96400 0.955230 1.000000 0.000000 8.191301

1 96228 0.955128 0.955230 1.000000 7.528342

2 96046 0.954975 0.912367 1.955230 6.835045

3 95849 0.954761 0.871288 2.867598 6.110155

4 95631 0.954486 0.831872 3.738886 5.352285

5 95386 0.954189 0.794010 4.570757 4.559820

6 95112 0.953879 0.757636 5.364768 3.730728

7 94808 0.953647 0.722693 6.122404 2.862761

8 94482 0.953302 0.689194 6.845097 1.953302

9 94123 0.953105 0.657010 7.534291 1.000000

10 93746  0.626200 8.191301 0.000000

 Installment =  11597.67  

   

z Dz cz jz Installment control = cz +jz 
0 95000.00 7688.78 3908.89 11597.67

1 87311.22 8040.63 3557.04 11597.67

2 79270.59 8407.04 3190.63 11597.67

3 70863.55 8789.52 2808.15 11597.67

4 62074.03 9190.75 2406.92 11597.67

5 52883.28 9615.53 1982.14 11597.67

6 43267.75 10066.40 1531.27 11597.67

7 33201.35 10547.61 1050.06 11597.67

8 22653.75 11056.08 541.59 11597.67

9 11597.67 11597.67 0.00 11597.67

10 0.00   

Table 6.10. Example of life amortization with constant installments 

The Excel spreadsheet is set up in two parts.  

In the top part, taking into account that the first two rows are for data and 
column titles, the values for the year z are in row z+3. The instructions are as 
follows: 

column A (year).   A3:  0 ; A4: = A3+1;  copy A4, then paste on A5 to A13; 
column B (l42+z).    demographic data l42,...,l52; 
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column C (E42+z).   C3: = B4*(1/(1+$E$1))/B3; copy C3, then paste on C4 to C13; 
column D (zE42).    D3:  1 ; D4: = C3*D3 ;  copy D4, then paste on D5 to D13; 

column E ( / 42z a ).   E3:  0 ; E4: = E3+D3 ;  copy E4, then paste on E5 to E13; 

column F ( /10 42z za ). F3: = ($E$13-E3)/D3 ;  copy F3, then paste on F4 to F13. 

In C14 the installment is calculated according to: //z n xaS , then C14: = 
C1/E13. 

In the bottom part, row 16 is for column titles and the values for year z are in 
row z+17 with the following instructions:   

column A(year).  A17:  0 ; A18: = A17+1;  copy A18, then paste on A19 to A27; 
column B (Dz).    B17: = $C$1*F3/$E$13 ;  copy B17, then paste on B18 to B27; 

column C ( zc ).   C17: = B17-B18 ;  copy C17, then paste on C18 to C26;  
  C28: = SUM(C17:C26) (= C1 to control); 

column D ( zj ).    D17: = (1-C3)*B18 ;  copy D17, then paste on D18 to D26; 

column F  ( z = z zjc ).  F17: = C17+D17 ;  copy F17, then paste on F18 to F26. 

6.3.2. Periodic payments with delayed principal amounts   

The life amortization, still with advance actuarial interest payments, can also be 
made with delayed principal repayments cz. We then have an actuarial 
generalization of the scheme seen in section 6.2.4, in particular of the German 
scheme if the installment invariance is imposed. 

Easy calculations lead to the conclusion that, when we have chosen the principal 
repayments cz so that their sum is equal to the initial debt D0 = S, the installments 
that realize the equivalence have the following values: 

– 0 0 0ˆ (1 )xj E D  

– 1 1 1 0 1 1 1 0 1 1ˆ ( )x xc j D D D D Dd vq E  

– 1 1ˆ ( ) ;( 2 1)z z z z z x z z z x z zc j D D D D Dd vq E z = ,...,n -  24 

                                                 
24 It is soon seen that the values ˆ z  paid in z , if introduced in (6.28), satisfy it, therefore 
realizing the actuarial congruity of this life amortization form. In fact, considering that 

cz Sz 1
n  and Dn = 0, and that  h Ex Ex+h   h 1Ex ,  h 0 , the following formulae: 

    
ˆ zz 0

n
z Ex =  (1-Ex )D0 (D0 D1Ex 1)Ex (Dz 1 DzEx z )z Ex Dn 1 z Exz 2

n 1

D0 D0 Ex D0 Ex D1 2Ex + D1 2Ex ... Dn 1 nEx Dn 1 nEx D0 S  
are obtained . 
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– ˆ n cn Dn 1      

The calculation of the retro-reserves and pro-reserves in z can be undertaken 
immediately, analogously to what was seen in section 6.3.1. 

6.3.3. Continuous payment flow 

In sections 6.3.1 and 6.3.2 we considered life amortization in the discrete scheme 
of periodic payments, in particular annual, for the loan. However, theoretically, for a 
limit case or as an approximation of a scheme with fractional payments with high 
frequency, for such a operation we can adopt a continuous payment flow, 
generalizing to the stochastic case the scheme considered in section 6.2.6. 

Using the time origin in the inception date of the loan and assuming for the life 
amortization a length t*, thus the time interval of the corresponding annuity is I(t*) = 
[0,t*], we indicate with (t;x,t*), or more easily (t), the payment flow25 from the 
borrower for the loan and assuming a demographic technical base in the 
continuum26. It is then obvious that the actuarial equivalence constraint, i.e. the 
congruity of (t) in order to realize the life amortization of the debt, that we assume 
unitary, in the interval I(t*), is expressed by 

 (t) tE xdt 10
 t*  (6.28') 

 
 

                                                 
25 The symbol used for the payment flow is chosen in analogy with  and ˆ  for the 
discrete case, stressing therefore the dimensional difference. 
26 With such an aim we consider a survival law{l(x)}as a function of the age x   where 

l(x) l(a)e
(y)dy

a
x

and (y)
l' (y)
l(y)

 is the mortality intensity in y. Thus, the continuous 

actuarial discount factor, which is also dependent on the intensity (t) of the financial 
exchange law, that is assumed as strongly decomposable (in particular, (t)=  constant in the 
exponential case) it is written:    

h E x e hl(x h) / l (x) e
[ (x t)]dt0

h

 

 while its reciprocal is the continuous actuarial accumulation factor. Furthermore the IV of a 

unitary life  annuity paid in the interval I(t*) is expressed by 
/ t* a x e

[ (x t )]dt0
h

0
t*

dh . 



Loan Amortization and Funding Methods     243 

which can be written  

 (t)e ( t)dt 1
0
 t*  (6.28") 

where (t)= [ (x )
0
t

]d is the natural logarithm of the actuarial accumulation 

factor,  being the intensity of the exponential financial law and resulting, 
obviously, in (0) = 0. 

Proceeding as in section 6.2.6, let us define the following quantities: 

– c(t) = amortization flow (for principal repayment) at time t;  
– j(t) = actuarial interest flow at time t;  
– B(t,t*) = mean discharged debt at time t; 
– D(t,t*) = 1- B(t; t*) = mean outstanding balance at time t;  
– A(t,t*) = mean initial value of the borrower payments made from 0 to t.  

The following constraints are valid: 

   (t) c(t) j(t) ,  t I (t*) (6.21') 

 c(t)dt 1
0
t*  (6.22') 

 
  B(t,t*) c(z)dz

0
t

  ,  t I (t*)  (6.23') 

 
  D(t,t*) c(z)dz

t
t*

  ,  t I (t*)  (6.24')  

 *( )  ( , *) + (x+t)   ,  t ( )j t D t t I t  (6.25')
 

 
  A(t,t*) (z)e (z)dz

0
t

   ,   t I (t*)  (6.26') 

Evaluating at time t in the actuarial sense (i.e. acting on the mean values), the 
value  

M(t,t*) = (t)
* 1 ( , )A t t e  

expresses the retro-reserve, while  

W(t,t*) = (z)e
[ ( )]d

t
z

dzt
t*  

expresses the pro-reserve. Maintaining in  t I (t*)  the bases , (x)  fixed at the 

inception date, we obtain 

M(t,t*) = W(t,t*) = D(t, t*)   ,    t I(t*)  
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given that, as  ( ) ( ) [ ( )]z
t

z t x d  from (6.28"), it follows that 

1 A(t, t*) e (t) =  (z)e
[ ( )]d

t
z

dzt
t*  

and, furthermore, that D(t, t*)  is a fair actuarial counterpart for payments in the 
interval (t,t*) with flow (z).27  

The previous formulations show that with a continuous payment flow we move 
from the certain amortization to the life one, substituting the purely financial 
intensity with the actuarial one (x t)  and then the function (t), defined in 
(6.19), with (t).   

We obtain easy generalizations by assuming, instead of the intensity  of the 
exponential financial law, the intensity (t) of any decomposable financial law.  

6.4. Periodic funding at fixed rate  

6.4.1. Delayed payments  

We saw in section 5.1 that the final value of an annuity on the basis of a given 
law can be considered as the final result of a funding operation on a saving account 
with such a law. Let us develop here in detail such an operation considering how it 
is done in the most important cases, starting from that of delayed payments. 

Let us consider a generic operation of funding in n periods (years) of a capital S 
by means of accumulation on a saving account at the per period rate i of the set of 
payments of amount Rh at the end of the hth period (h = 1,...,n). Then in such an 
account a sinking fund is increasing.  

The following constraint 

 S Rh (1 i)n h
h 1
n

 (6.34)      

must then be satisfied. It implies the financial equivalence between the set of 
supplies (h,Rh) of the investor and the dated amount (n,S) that is the result of the 
investment operation. 

Different from the discrete amortization schemes described previously, the 
principal amount Ch is the increase of the fund at time h and then is obtained 

                                                 
27 In the continuous case the considerations in footnote 23 also hold if at time z the technical 
bases { ,l(x)} different from those initially assumed for the continuous life amortization are 
adopted. 
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adding, and not subtracting, to the installment Rh  the interest amounts Ih earned by 
the investor on the sinking fund in the period (h-1,h) and proportional to the amount 
accumulated in h-1. Indicating with Gh the level of the sinking fund at the integer 
time h on the saving account due to the operation (then G0 = 0) and having fixed in 
advance the principal amount Ch non-negative and satisfactory, as for the 
amortization, the constraint of the 1st of (6.3), the following recursive relations hold:  

 
Gh Gh 1 Ch

Ih i Gh 1

Rh Ch Ih

(h 1,...,n)  (6.35) 

Starting from the initial condition G0 = 0, all the values {Ih},{Rh},{Gh} are 
obtained and in particular, due to the 1st part of (6.3): Gn = S, i.e. the requested 
funding. In the dynamics of the operation, the fundamental recursive relation holds 

   Gh Gh 1(1 i) Rh  ,  (h = 1,...,n) (6.36) 

and can be written as 

   Rh (Gh Gh 1) i Gh 1  ,  (h = 1,...,n)  (6.36') 

The retro-reserve M(h;i) and the pro-reserve W(h;i) (at credit for the investor) of 
the operation, at time h and at rate i (the rate chosen at the beginning or adjusted in 
h) are given by the expression  

 M (h;i) Rss 1
h (1 i)h s  

W (h;i) S(1 i) (n h ) Rs(1 i) (s h )
s h 1
n               (6.37) 

and, if i is the rate of the law initially adopted for the funding, the result is 

 M(h;i)  =  W(h;i)  =  Gh  28 (6.38) 

As in gradual amortization, if the CCI regime is adopted, the reserves in each 
intermediate time between consecutive payments can be defined  (for example to 
calculate exactly the assignment value of the credit) at each time t=k+s (where k = 
integer part of t; s = decimal part of t). We find 

 M(t;i)  =  M(k;i) (1+i)s   ;   W(t;i)  =  W(k;i) (1+i)s (6.39)  

                                                 
28 Also for the funding, the considerations for retro-reserve and pro-reserve found in footnote 
16 are extended if at time k different rates are adopted from the one initially chosen. 
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By varying t in the real numbers between 0 and n, in [0,n] we obtain two 
functions, M and W, coincident if the funding operation between 0 and n is fair, 
discontinuous (right-continuous) at integer time k.     

 

 
Figure 6.3. Plot of delayed funding 

If the funding is made with constant delayed payments Rh = R29, all the relations 
are adopted with this position. In particular, the equivalence constraint between S 
and R  is given by 

 S  = R sn |i     or    R  = S n |i (6.40) 

By adopting (6.36), and using it for consecutive values of h and subtracting, it is 
verified that, as in French amortization, the principal amount changes in geometric 
progression with ratio (1+i), resulting in 

  Ch R(1 i)h 1  ;  Gh Rsh |i S
sh |i

sn |i
 (6.41) 

The retro-reserve and the pro-reserve in h at rate i are expressed by 

  M (h;i) R sh |i   ;   V (h;i) S(1 i) (n h ) R sn-h |i  (6.37') 

                                                 
29 An example of term funding by means of delayed constant periodic payments has been 
encountered in the American amortization considered in section 6.2.5. 
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Exercise 6.8 

We have to form a capital at maturity of €25,500 in 5 years on a saving account 
at the annual delayed rate of 5.25%, with annual delayed payments corresponding to 
the following sequence of principal repayments, the sum of which is 25,500:  

C1 = 4,500 ;  C2 = 5,300 ;  C3 = 5,600 ;  C4 = 6,000 ;  C5 = 4,100. 

Calculate the funding schedule. 

A. Applying (6.35) on an Excel spreadsheet, from the given value {Ch} in the 2nd 
column are found the end of year balances {Gh}; from here we find the earned 
interest {Ih} and the installments {Rh} to be paid by the investor. The following 
schedule is obtained.   
 
              DELAYED FUNDING WITH GIVEN PRINCIPAL AMOUNTS 

Capital = 25,500 Rate = 0.0525  

     

h     Ch Gh Ih Rh 
     

1 4,500.00 4,500.00 0.00 4,500.00 

2 5,300.00 9,800.00 236.25 5,063.75 

3 5,600.00 15,400.00 514.50 5,085.50 

4 6,000.00 21,400.00 808,50 5,191.50 

5 4,100.00 25,500.00 1123,50 2,976.50 

Table 6.11. Example of delayed funding 

The Excel instructions are as follows: the 1st, 2nd and 4th rows are for data and 
titles: B2: 25500; D2: 0.0525; the 3rd and 5th rows are empty. Starting from the 6th 

row:   

column A (year):  A6: 1; A7:= A6+1; copy A7, then paste on A8 to 
A10; 
column B (principal amount):  insert data on B6 to B10;  sum in: B2); 
column C (accumulated amount): C6:= C5+B6; copy C6, then paste on C7 to C10;  
column D (interest amount):  D6:= C5*D$2; copy D6, then paste on D7 to D10;  
column E (installment):  E6:= B6-D6; copy E6, then paste on E7 to E10.   

Exercise 6.9  

With the same data as exercise 6.8 for the amount at maturity, for the length and 
the rate, calculate the funding schedule imposing the installments invariance.  
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A. By applying (6.35) and the 2nd part of (6.40), and by using an Excel 
spreadsheet the following schedule is found. 

DELAYED FUNDING WITH CONSTANT INSTALLMENT  
Capital = 25,500 Rate = 0.0525 

Years  = 5 Installment = 4,591.87 

    
 h        Ch Ih Gh 

    

1 4,591.87 0.00 4,591.87 

2 4,832.94 241.07 9,424.81 

3 5,086.67 494.80 14,511.48 

4 5,353.72 761.85 19,865.21 

5 5,634.79 1,042.92 25,500.00 

Table 6.12. Example of delayed funding 

The Excel instructions are as follows. Rows 1, 2, 3 and 5 are for data, titles and 
one calculation: B2: 25,500; D2: 0.0525; B3: 5; D3:= B2*D2/((1+D2)^B3-1); rows 
4 and 6 are empty. From row 7: 

column A (year):  A7:= A6+1; copy A7, then paste on A8-A11; 
column B (principal amounts):  B7:= D$3*(1+D$2)^A6; copy B7, then paste on 

B8 to B11; 
column C (interest amounts):  C7:= B7-D$3; copy C7, then paste on C8 to C11; 
column D (sinking fund):  D7:= D6+B7; copy D7, then paste on D8 to D11. 

6.4.2. Advance payments    

Let us consider briefly the variations in relation to section 6.4.1 when the 
payments, indicated using hR , are made at integer time h referring to the period 
(h,h+1), (h = 0, 1,..., n-1), and therefore are called advance payments. The closure 
constraint with the amount S to be formed at time n becomes 

 
1
0 (1 )n n h

hhS R i  (6.42) 

The recursive relations regarding the accumulated capitals Gh at time h, the 
principal amounts hC  subject, as for the amortization, to the 2nd of (6.3), the interest 
amounts hI  and the installments hR , starting from the initial condition G0 = 0, are:    
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1

1 ( 0,..., 1)
h h h

h h

h h h

G G C

I d G h n

R C I
 (6.43) 

where d=i/(1+i) (obtaining, in particular, Gn = S) and the recursive relation on the 
accumulated amount is found to be 

 1 ( )(1 )  ,   ( 0 1)h h hG G R i h = ,...,n -  (6.44) 

and the decomposition is found to be 

  1 1( )    ,  ( =0,..., -1)h h h hR G G d G h n  (6.44') 

For the retro-reserve M(h;i) and the pro-reserve W(h;i) at time h the following 
expressions hold: 

  
1
0( ; ) (1 )h h s

ssM h i R i  

 
1( ) ( )( ; ) (1 ) (1 )nn h s h

ss hW h i S i R i  (6.45) 

which are equal to each other and to Gh if i is the rate initially adopted for the 
funding.  

If the CCI regime is adopted, in the advance case we can also define the reserves 
in whichever non-integer time t=k+s (where k = integer part of t; s = decimal part of 
t), resulting in 

 M(t;i)  =  M(k+1;i) (1+i)-(1-s)  ;  W(t;i)  =  W(k+1;i) (1+i)-(1-s) (6.39') 

By varying t in the real numbers between 0 and n we obtain in (0,n) two 
functions, M and W, coincident if the funding operation between 0 and n is fair, 
discontinuous (continuous to left) at the integer time k. 
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Figure 6.4. Plot of advance funding 

In the case of constant advance payments it is enough to put hR R  constant in 
the previous formulation. The following is then obtained: 

 
n is  S R      or     n|iS R  (6.40') 

and, with G0= 0: 

  1 ( )(1 )  ,  (h=0,...,n-1)h hG G R i  (6.46) 

from which 

 1 1( )  ,  ( =0,..., -1)h h hR G G d G h n  (6.46') 

Also in this case the principal amount varies in geometric progression with ratio 
(1+i), resulting in: 

 h|i1
h|i

n|i

(1 )   ;   G  h
h h

s
C R i R s S

s
 (6.47) 

The retro-reserve and pro-reserve in h are 

 
( )

n|i n-h|i( ; )    ;  ( ; ) (1 )  n hM h i R s W h i S i R s  (6.45') 

which are equal to each other and to Gh if i is the initially adopted rate for the 
funding. 
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Exercise 6.10 

With the same data as in Exercise 6.8 for the capital at maturity, for the length 
and the rate, calculate the advance funding schedule imposing the invariance of 
installments. 

A. Applying (6.43) and the 2nd of (6.40') we obtain on an Excel spreadsheet the 
following schedule. 

ADVANCE FUNDING WITH CONSTANT INSTALLMENT 

Capital = 25,500 Delayed rate = 0.0525 

Years  = 5 Installment  = 4,362.82 

    

 h         Ch          Ih        Gh 
0 4,591.87 229.05 0.00 

1 4,832.94 470.12 4,591.87 

2 5,086.67 723.85 9,424.81 

3 5,353.72 990.90 14,511.48 

4 5,634.79 1,271.97 19,865.21 

5 0.00 0.00 25,500.00 

Table 6.13. Example of advance funding 

The Excel instructions are as follows: the first 3 row and the 5th row are for data, 
titles and one calculation:  
B2: 25500; D2: 0.0525; B3: 5; D3:= B2*D2/(1+D2)/((1+D2)^B3-1);  
the 4th row is empty; from the 6th  row: 
column A (year): A6: 0; A7:= A6+1; copy A7, then paste on A8 to 
A11; 
column B (principal amount): B6:= D$3*(1+D$2)^A7; copy B6, then paste on B to 
 B10; B11: 0; 
column C (interest amount): C6:= B6-D$3; copy C6, then paste on C7 to C10 C11: 
0; 
column D (sinking fund): D6: 0; D7:= D6+B6; copy D7, then paste on D8 to 
D11.  

6.4.3. Continuous payments 

Analogous to the continuous amortization scheme (see section 6.2.6) is that of 
the certain funding30 of a capital S by means of an continuous annuity with flow (t) 
in the time interval I(t1) from 0 to t1 . 

                                                 
30 Together with the classification of amortizations and for reasons of completeness we 
should briefly mention the funding by means of payments that are conditioned to an investor’s 
survival, i.e. by a life annuity. However, it is evident such a scheme coincides with that of life 
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This issue has been already discussed in general terms in Chapter 4, where the 
value of the accumulated amount in (4.14') has been found as the solution of the 
differential equation (4.13) in which the flow that leads to the variation of the 
accumulated amount is the sum of the interest flow and of the increasing flow for 
the net payment - (t) (negative from the viewpoint of the cash) to the fund to be 
formed. It will be enough to mention it briefly in order to highlight conditions by 
which a payment flow (t) = - (t) is used to form in t1 a capital S. Let us assume for 
simplicity S=1 and a financial low strongly decomposable with intensity (t) ( (t) = 

 constant if the low is exponential). Using: 

 (t) = (z)dz
t
t1   , t I (t

1
) (6.48) 

to form the unitary capital at time t1 the flow (t) varying in I(t1) must satisfy the 
constraint of financial closure: 

  
( z)e ( z )dz

0

t1  = 1                                      (6.49) 

If (t) = constant and (t) =   constant, due to (5.16) and (6.49), 

 1/
 
st 1|i

( ) (6.49') 

must hold, extending the meaning of the symbol 
 
st 1|i

( )
 if t1 is not an integer. 

Using: 

G(t) = sinking fund formed in t; 
c(t)  = flow in t of variation of the sinking fund; 
j(t)   = flow in t of interest (received for the investor); 

the following recursive relations hold, starting from G(0)=0  

 

j(t) (t)G(t)

c(t) j(t) (t)

c(z)dz G(t)
0
t

 t I (t
1
)  (6.50) 

In the further hypothesis of constant payment flows, it is possible to extend (5.9) 
to the continuous scheme. Considering (6.20') and (6.49') and also the relation 

 
1/ st 1|i

( ) 1/ at 1|i
( )

 , that can be immediately verified, we find: 

  +  = (6.51) 

                                                                                                                   
insurances with endowment (temporary or perpetual) policies. Then for life funding it is 
enough to refer to a treatise on life insurances.  
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This relationship links the constant flows of unitary amortization and funding 
(then intensities from the dimensional point of view, having divided the flows by the 
amount S) in operations of the same length in an exponential regime. 

6.5. Amortizations with adjustment of rates and values 

6.5.1. Amortizations with adjustable rate  

For the reasons explained in Chapter 1, the quantifications discussed so far 
consider monetary amounts. This is not only for homogenization of values, but it 
can be used to settle obligations because money is the legal measure of wealth. 

The phenomenon of monetary inflation or other causes that lead to variations 
(more often a decrement) of the purchasing power of money, which is now no 
longer linked to gold or any other assets with stable and intrinsic value, is more and 
more widespread in the presence of macroeconomic imbalances. 

Due to this phenomenon, loan operations and the following amortization, fair in 
monetary terms at a given rate, are not fair in real terms, i.e. considering the 
purchasing power of the traded sums. Then the receiver of the sums with future 
maturity is substantially damaged if the variation of the purchasing power is a 
decrement. Therefore, in recent times, which are characterized by permanent 
inflation, financial schemes for amortization have been developed which are used to 
correct its distorting effects by means of opportune variations in the aforementioned 
methods. Such schemes are not only useful to neutralize these negative effects for 
the investor, of monetary depreciation, but more generally are used to reduce the 
risk of oscillation of the financial market in both directions. 

The first variation consists of making the rate fluctuate up and down, adjusting it 
to the current rate for new operations in the financial market, without changing the 
outstanding loan balance. With this procedure the interest amount of one period is 
calculated by multiplying per period the updated rate by the outstanding balance at 
the beginning of the period. 

Limiting ourselves to the delayed installment case, let us consider two forms of 
amortization with adjustable rate, highlighting that the rate variations are not known 
at the beginning but are fixed in the hth period in relation with the aforementioned 
phenomena, regarding the inflation and the following depreciation of money. 
Therefore, it is not possible to fix at the inception date of the loan the effective 
amortization plan that will be adopted. 
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a) French amortization with adjustable rate 

In this form, we proceed initially with the progressive method described in 
section 6.2.2, calculating the installments by means of (6.8). The installments remain 
unchanged for the following periods if the rate is not adjusted, but, in the case of 
variations, new installments are calculated, using the adjusted rate, the outstanding 
loan balance and the remaining time, on the basis of (6.8). 

In formulae, indicating with i(1),..., i(n)  the rates (not necessarily different) that 
will be applied in the subsequent periods 1,..., n, the installments and the outstanding 
balances of each period are obtained recursively from the following equation system 
(where D0=S) 

 (h 1,...,n)
Rh Dh 1 n h 1¯|i ( h )

Dh Rh an h ¯|i ( h )

 (6.52) 

Obviously the interest payments and the principal repayments are calculated  
using  

 Ih  = Dh-1
 i(h)  ;  Ch  =  Rh - Ih  =  Dh-1 – Dh  (6.52') 

From (6.52) it follows that the installments remain unchanged between two 
subsequent rate variations; furthermore the installment variations are concordant to 
the rate variation, if it changes. To prove this statement, we can observe that the 
recursive relation 

 Rh 1 Rh
an h ¯|i ( h )

an h ¯|i ( h 1)

 ,  h = 1,....,n-1 (6.52") 

on the installments follows from (6.52), and that am |i  is a decreasing function o rate 
i. In addition, the principal repaid in h+1 is 

  Ch 1 Dh n h |i( h 1) Rh 1(1 i (h 1)) (n h ) (6.53) 

and | n |i decreases with the rate. Therefore, the variation of the principal repayment 
due to the rate variation is discordant to it; the result is that a rate increment slows 
down the amortization, giving rise to higher outstanding balances and higher 
installments than those in the absence of adjustments, even if the “closure” remains 
unchanged, i.e. the debt becomes zero at the end of the loan. 

b) Amortizations with adjustable rate and prefixed principal amount 

In the previous form of amortization, a) in the case of rate adjustments there is a 
novation of the contract on the outstanding loan balance and remaining length, such 
that with respect to the progressive scheme at fixed rate not only are the sequences 
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of interest payments subject to variations, but also those of principal repayments and 
then of the outstanding balances. 

Or it can be agreed that the principal repaid remains unchanged in case of 
adjustment of the contractual rate, so as to eliminate the uncertainty of the principal 
repayments and to reduce that of the interest payments, obtained multiplying the 
rate, varying with h in a way not previously foreseen, for the prefixed outstanding 
loan balances. Thus we lead back to the recursive system (6.4'), modified to take 
into account  the rate variability in the period h, i.e.     

 (h 1,...,n)

Dh Dh 1 Ch

Ih i (h )Dh 1

Rh Ch Ih

 (6.4''') 

which, using D0=S, enables the calculation of the interest payments, the installments 
and the outstanding loan balances in the following periods.     

Example 6.3 

This example clarifies the comparison, set out in the following table, between the 
amortizations in 5 years of the amount S = €100,000 in the three different forms: 

1) “French” at rate i = 0.05 that gives the delayed constant installment R = 
23,097.48; 

2)  form a) with rates i(h) specified in the table;  

3)  form b) with the same i(h) and constant principal amount Ch = 20,000.00. 

 

    French                               form a)            form b) 
h          Dh                     i(h)            Rh                 Dh                       Ih                  Rh                        Dh 
1 81,902.52 0.05 23,097.48 81,902.52   5,000.00   25,000.00   80,000.00 
2 62,900.16 0.07 24,179.93 63,455.77 5,600.00   25,600.00   60,000.00 
3 42,947.69 0.07 24,179.93 43,717.75 4,200.00    24,200.00    40,000.00 
4 21,997.60 0.05 23,511.62 22,392.02    2,000.00   22,000.00    20,000.00 
5          0.00 0.05 23,511.62          0.00  1000.00 21,000.00          0.00 

  

Table 6.14. Comparison of different amortization rules 

It can be seen that in form a) the installment of the 1st year coincides with the 
installment R of the French amortization at rate 5% but in the 4th year, after two 
years of increasing rates, even if the rate returned back to the initial level, due to the 
higher outstanding balance, R4 > R  results. Thus, with i(5) = i(4) we have R5 = R4. 
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6.5.2. Amortizations with adjustment of the outstanding loan balance 

The rate adjustment considered in section 6.5.1 solves, in an approximated 
manner, the problem of money depreciation (or, more generally, of the variation of 
purchasing power of money) because it acts only by an additive variation of rate 
which does not exactly reflects Fisher’s equation. A procedure to fully solve this 
problem is that of indexation of the prefixed outstanding loan balances, obtained by 
multiplying such balances by coefficients derived from a series of statistical indices 
measuring the mean prices varying  with the same periodicity as the redemption 
payments. 

In such a way, the installments and their components for interest and 
amortization, that are proportional to the outstanding balances, will be modified 
multiplicatively according to the same coefficients, where the constraint of 
elementary closure, which assumes the non-modifiability of the principal payments 
and thus of the outstanding balances, is not satisfied.    

Let us formalize the procedure, limiting ourselves to the adjustment of the 
French amortization31 of the landed amount S = Db at time b in n periods at the per 
period rate i by means of installments that, if the index remains constant, would all 
assume the value R = S i/(1-(1+i)

-n
). 

Let {Zh}, (h = b, b+1,...,b+n-1) be, the series of statistical indices needed for the 
adjustment in n periods, with the same periodicity of payments. The updating 
coefficient between time h and h+1 is Kh+1 = Zh+1/Zh = 1+ph+1, where ph+1 is the 
corresponding per period updating rate; therefore 

b = 1  ;  h K jj b 1

h
Zh Zb ;  (h = b+1,...,b+n-1) (6.54) 

are the global updating factors for h-b periods to be used in the calculations. In the 
absence of adjustments the outstanding loan balances at time r would be 

 Dh = R ab+n-h |i  (6.55) 

while, due to what has been said, the updating modifies the sequence {Dh} in {D'h} 
defined by 

  D’h = Dh h  (6.56) 

                                                 
31 The same conclusions hold with different amortization schemes that give rise to any 
development of the outstanding balances before the updating. 
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It is clear that b+n-h delayed payments of constant amount R’h+1 (= updated 
installment of the period h+1) would amortize D’h in the absence of further 

updating. Thus D’h = R’h+1 ab+n-h |i  and then due to (6.22): D’h/Dh = R’h+1/R = h , 
which can be written 

 R’h+1 = R h (6.56') 

Proceeding analogously, the updated interest paid is 

 I’h+1 = i D’h = i Dh h = Ih+1 h  (6.57)  

and subtracting (6.24) from (6.23') it is obtained for the updated principal repaid 

 C’h+1 = (R - Ih) h = Ch+1 h  (6.57')  

Briefly, the outstanding loan balance after h-b periods from the inception and 
also the installment paid at the end of the period, i.e. at time h+1, and its principal 
and interest components are updated by means of the factor h given by (6.21). 

Exercise 6.11  

Amortize in 5 years the amount €80,000 loaned at time 6 at the annual rate of 
4.5% with value adjustments according to the index {Zh}, (h = 6, 7, 8, 9, 10), of the 
“cost of life” on the basis of the observed values, specified in Table 6.15. 

A. On the basis of the data and using: Dh = Dh-1-Ch, the following amortization 
schedule is obtained, that compares the non-updated values of the French 
amortization and the updated values in the outstanding loan balances on the basis of 
{Zh}. By using S=€80,000; n=5; i=0.045; R=€18,223.33, the following data is 
obtained (rounding off  €amounts to no decimal-digit). 

S = 80000 Start = 6  Length = 5 Rate = 0.045 Payment = 18223 
h Zh h Ih I'h Ch C'h R'h Dh D'h 
6 120.0 1.0000 80,000 80,000 
7 122.5 1.0208 3,600 3,600 14,623 14,623 18,223 65,377 66,739 
8 125.7 1.0475 2,942 3,003 15,281 15,600 18,603 50,095 52,475 
9 129.6 1.0800 2,254 2,361 15,969 16,728 19,089 34,126 36,856 

10 133.2 1.1100 1,536 1,659 16,688 18,023 19,681 17,439 19,357 
11   785 871 17,439 19,357 20,228 0 0 

Table 6.15. Amortizations with adjustment of the outstanding loan balance 
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The Excel instructions are as follows. The first 2 rows are for data, titles and one 
calculation: B1: 80000; D1: 6;  F1: 5; H1: 0.045; J1:= (B1*H1)/(1-(1+H1)^-F1). 
From the 3rd row:  

column A (time):  A3:= D1; A4:= A3+1; copy A4, then paste on A5 to A(3+F1); 
column B (Zh):  from B3 to B7 insert periodic index numbers for F1 periods; 
column C ( h):   C3: 1; C4:= B4/B$3; copy C4, then paste on C5 to C7; 
column D (Ih):   D4:= I3*H$1; copy D4, then paste on D5 to D8; 
column E (I'h):   E4:= D4*C3; copy E4, then paste on E5 to E8; 
column F (Ch):   F4:= J$1-D4; copy F4, then paste on F5 to F8;  
column G (C'h):  G4:= F4*C3; copy G4, then paste on G5 to G8; 
column H (R'h):  H4:= E4+G4 (or := J$1*C3); copy H4, then paste on H5 to H8; 
column I (Dh):   I3:= B1; I4:= I3-F4; copy I4, then paste on I5 to I8; 
column J (D'h):   J3:= I3*C3; copy J3-paste on J4 to J8. 

6.6. Valuation of reserves in unshared loans   

6.6.1. General aspects 

The valuation of the pro-reserve W(t,i*) at a given time t of a financial operation, 
obtained by discounting the supplies after t on the basis of a prefixed law, in 
particular the exponential one at a valuation rate i* generally different from the 
contractual rate i originally agreed for the calculation of interest (because can be 
different the valuation time, the evaluating subject, the aims and the market 
conditions), is often interesting. We have such valuations when a company balance 
is prepared for internal or external/official use, or for the assignment of credits or for 
the carrying of debts regarding the operation. 

We will consider the calculation of the pro-reserve and its components in 
relation to the gradual amortization of a debt during its development (or sometimes 
at the inception date). Using periodic then discrete payments, we can assume the 
conjugate of a DCI. law. We will complete this consideration with the development 
of the so-called Makeham’s formula and the calculation of the usufruct in the 
discrete scheme, using any valuation rate i*,  for the most important amortization 
methods. 

In a gradual amortization with n periodic installments Rk delayed and varying, of 
the type seen in section 6.2.1 (with simple variations for the advance case) assuming 
a unitary period, the pro-reserve W(t,i*) is the current value in t of the installments 
Rk with due dates k t; it is equal to the outstanding loan balance  

Dh Rk (1 i) (k h)
k h 1
n  if i* = i and t = h. If there is a need to distinguish 
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between the value of the principal repayments Ck and that of the interest payments Ik 
(e.g. because the creditor of interest is different from that of the principal), we will 
have to evaluate separately at the rate i*, the usufruct U(t,i*) and the bare ownership 
P(t,i*), the sum of which is W(t,i*)32.  

Let us consider the position t = h evaluating at integer time h the pro-reserve and 
its components usufruct and bare ownership in the discrete, then the present value 
of the interest payments and the principal repayments, at an evaluation rate i*33.  

 In formulae with already defined symbols, 

 (h 1,...,n)

Wh
* W (h,i*) Rk (1 i*) (k h )

k h 1

n

Uh
* U(h,i*) Ik (1 i*) (k h )

k h 1

n

Ph
* P(h,i*) Ck (1 i*) (k h )

k h 1

n

   34 (6.58) 

obtaining Wh = Dh , Uh , Ph  as particular values when i*=i.  

6.6.2. Makeham’s formula 

The additivity expressed by 

 
  Wh

* Uh
* Ph

*  ;  Wh Uh Ph  ;  (h = 1,...,n) (6.59) 

is obvious (and it has already been found). 

The following Makeham’s formula, which links values at rate i* to those at the 
contractual rate i, also holds: 

 Wh
* Ph

* i

i *
(Dh Ph

*)  (6.60) 

                                                 
32 The examined valuation is apparently an operation with two rates, i and i*, but looking at it 
more closely, the only rate i* is used as a variable with the meaning of discount rate of the 
amounts – principal repayments, interest payments, installments, etc. – that at the valuation 
time are already fixed as a function of the original data, between which there is the repayment 
rate i. 
33 They will be initial values if h= 0, residual values if h = 1,…,n. 
34 The values for non-integer time t in exponential regime, using t=h+s (0<s<1), are obtained 
from those in (6.25) multiplying by (1+i)s. 
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and from which, due to (6.59), the following expression to evaluate Uh
*   as a 

function of  Ph
* is found:35  

  Uh
* i

i *
(Dh Ph

*)  (6.60') 

Proofs of Makeham’s formula 

1) A brief proof of Makeham’s formula based on the equivalence at the rate i* 
can be given. It is enough to observe that at the rate i the debt Dh is amortized with 
installments Rs = Cs + Is  (s = h+1, ...,n), i.e. it is fair to exchange Dh with the 
installments Rs, while at rate i*, if the principal amounts Cs and then the outstanding 
loan balances Ds remain unchanged, to preserve the equivalence the interest 
payments must be: Is

* i * Ds 1 Is i * /i , i.e. at rate i* it is fair to exchange Dh with 
the installments Rs

* Cs (i * / i)Is . It then follows that: 

Dh Rs
*

s h 1

n

(1 i*)
(s h) Cs

s h 1

n

(1 i*
)

(s h ) i*

i
Is

s h 1

n

(1 i*)
(s h )

 

or, due to (6.58), 

 Dh Ph
* i *

i
Uh

*  (6.61) 

from which we obtain (6.60') and (6.60).       

2) Due to the closure equation, it follows that Dh Ch kk 1
n h , i.e. the 

outstanding loan balance Dh at time h is decomposed in subsequent principal 
repayments Ch+k, (k =1,..,n-h), each of which leads to its refund after k years and the 
payment of interest iCh+k for k years. The overall valuation in h of these obligations 
at rate i* is Wh

*. Therefore, using v*
k (1 i*) k  the following is obtained 

 

                                                 
35 By adding and subtracting Dh in the 2nd part of (6.27), Makeham’s formula becomes: 

Wh
* Ph

* i

i *
(Dh Ph

* ) , which highlights the decreasing of Wh
*
 with respect to i* (then the 

convenience for the debtor, that assigns the debt during the amortization, to evaluate it at the 
highest possible rate) and gives a measure of the spread between the valuation at rate i* and 
that at rate i of the future obligation of the debtor, as (Wh

* Dh ) has the sign of (i-i*). If , in 

particular, h=0, it is sufficient to put in the formulae Dh= S = landed capital, to evaluate the 
obligations at any rate since from inception. Given the biunivocity of the relations, we can 
exchange the role between i* and Wh

*
, assuming the value Wh

*
 fixed by the market and 

obtaining i* that takes the meaning of internal rate of return (IRR). 
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i.e. (6.61), from which we obtain (6.60') and (6.60). 

3) A purely analytical proof of Makeham’s formula is obtained by applying 
Dirichlet’s formula, i.e. summing by columns instead of by rows the elements 
ms,k Ck (1 i*) (s h)  of a triangular matrix. It follows that 
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i.e. we obtain (6.60') and (6.60).       

Observations 

1) By adding and subtracting Dh on the right side of (6.60) Makeham’s formula 
becomes: 

 Wh
* Dh

i * i

i *
(Dh Ph

*)  (6.60") 

which, as Ph
* Dh

, highlights the increasing of Wh
* with respect to i*. Thus, Wh

* is 
the assignment value of the residual credit of the lender at the integer time h (then 
the debtor that assigns the debt during the amortization has the convenience of 
evaluating at the highest possible rate) and gives a measure of the spread between 
the valuation Wh

* of the outstanding loan balance and its nominal value Dh if i* i , 
because we obtain Wh

* Dh
 or Wh

* Dh
 if i* i  or i* i  respectively.  If h=0, it 

is sufficient to use Dh = S in (6.60"). 

2) Given the biunivocity of the relations, we can exchange in (6.60) or in its 
transforms the roles of i* and Wh

*, assuming the latter as the value given 
exogenously by the market laws and obtaining i* that assumes the meaning of return 
rate for the investor lender or cost rate for the financed borrower (see section 4.4.1).  

3) A recurrent relation analogous to (6.6) also holds for Wh
*. In fact, as it is 

easily verifiable, it results in: 

 Wh
* Wh 1

* (1 i*) Rh
 (6.62) 
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4) New expressions of Uh
*
 and Ph

*
 are obtained by considering the variation of 

Wh
* due to that of the rate i* and finding Uh

*
 and Ph

*
 from the system of equations 

(6.59) and (6.60') with Wh = Dh . This results in:    

 Uh
* i 

Wh
*  Wh

i * i
    ,     Ph

* i *Wh
* i Wh

i * i
 (6.63) 

and therefore Uh
*

 is the partial difference quotient of Wh
* in the variation from i to 

i* multiplied by –i , while Ph
* is the partial difference quotient of i*Wh

* in the same 

variation. Taking the limit for i* i  on the differentiable functions Wh
* and i*Wh

*, 

we obtain the following result 

 Uh lim
i* i

Uh
* i

Wh
*

i*
i* i

    ,     Ph lim
i* i

 Ph
* (i*Wh

*)

i*
i* i

 (6.64)  

6.6.3. Usufructs and bare ownership valuation for some amortization  forms 

In the concrete case of amortization, we are also interested in the valuation of the 
residual installments and their components for interest and for amortization at any 
rate i* and at any time t=h+s , with 0<s<1, to which the additivity, espressed by 
(6.59), is extended. Let us note that, given the delayed or advance payments at 
integer times h, we obtain (see footnote 34): 

 
s

(1 )

* * *

* * *

( , ) ( , )(1 ) ,              with delayed payments  

( , ) ( 1, )(1 ) ,    with advance payments   s

W t i W h i i

W t i W h i i
 (6.65) 

using analogous formulae for U (t,i*)  and P(t,i*) . 

  We can then limit ourselves to the calculation for integer time h, making 
explicit the valuations of usufruct and bare ownership (from which summing we find 
the pro-reserves) in the following usual forms of amortization. As a function of 
parameters S, n. i, and evaluating at the rate i* we easily obtain, using (6.63):   

a) Amortization with one final lump-sum refund and periodic delayed interest  

 U(h,i*) S i an h ¯|i* ;  P(h,i*) S(1 i*) (n h )  (6.66) 
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b) Delayed amortization with constant principal repayments  
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c) Amortization with constant delayed  installments 
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 (6.68) 

where R = S n |i  . 

Example 6.4: application of Makeham’s formula and comparisons  

Let us apply in this example Makeham’s formula for the calculation of usufruct, 
starting from that of bare ownership and using any valuation rate, in the customary 
amortization forms for unshared loans, comparing the results with those obtainable 
using the closed formulae (6.29), (6.30) and (6.31): 

a) Amortization with one final lump-sum refund and annual delayed interest. 

 Let us use:  
 S =  €2,000 (debt); n = 10 year;  i = 5.5% (annual contractual rate); 
 i* = 6.2%  (annual valuation rate). 

With formula (6.29), the initial valuation (h=0) is obtained: 
   U0

* 110 a10 |0.062
 ; P0

* 2,000 (1.062) 10 1,095.94 ;W0
* 1,897.93 

at time h=5 the result is: 

U5
* 110 a5 |0.062

 ; P5
* 2,000(1.062) 5 1,095.94 ; *

5 1,941.35W  

By applying Makeham’s formula in h=0 and h=5, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.055

0.062
(2000.00 1095.94) 801.99; 

U5
* 0.055

0.062
(2000.00 1480.50) 460.85. 

b) Annual amortization with constant principal repayments 
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Let us use:  
 S =  €1,500 (debt); n = 4 years;  i = 6% (annual contractual rate); 
 i* = 5.2%  (annual valuation rate). 

We then obtain the following amortization schedule. 

Year Principal repaid Interest paid Installment Balance 
1 375.00 90.00 465.00 1,125.00 
2 375.00 67.50 442.50  750.00 
3 375.00 45.00 420.00  375.00 
4 375.00 22.50 397.50      0.00 

Table 6.16. Example of amortization with constant principal repayments 

For the initial valuation (h=0) with a direct calculus for U0
* and using formula  

(6.30) for P0
* we obtain:  

     U0
* 90.00 1.052-1 67.50 1.052-2 45.00 1.052-3 22.50 1.052-4

 
=  203.57 

   P0
* 375 a4 |0.052 1,323.58 ; W0

* 1,527.15 

For h=2 we find 

      U2
* 45.00 1.052-1 22.50 1.052-2 63.11;  

*
2 375 695.31P a2|5.2% ; 

    W2
* 758.42 

Applying Makeham’s formula for h=0 and h=2, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.06

0.052
(1500.00 1323.58) 203.57 ; U5

* 0.06
0.052

(750.00 695.31) 63.11 

c) Annual amortization with constant installments 

Let us use, as in b):  

 S =   €1,500  (debt);  n = 4 years;  i = 6% (annual contractual rate); 
 i* = 5.2%  (annual valuation rate); then R = 432.89. 
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We obtain the following amortization schedule. 

Year Principal repaid Interest paid Outstanding balance 
1 342.89 90.00 1,157.11 
2 363.46 69.43   793.65 
3 385.27 47.62   408.38 
4 408.38 24.51       0.00 

Table 6.17. Example of amortization with constant installments 

Using (6.31), for the initial valuation (h=0) we obtain 

 * 432.89 0.06
0 0.008 209.193.529538 3.465106U ;    

 * 4 443289
0 0.08 1.052 1.06 1,318.71P ; W0

* 1,530.80 

For h=2 we find  

 * 25.9734
2 0.008 67.411.854154 1.833393U ;  

* 2 2432.89
2 0.08 1.052 1.06 735.23P ; W2

* 802.64. 

By applying Makeham’s formula for h=0 and h=2, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.06

0.052
(1500.00 1318.71) 209.19 ;  U2

* 0.06
0.052

(793.65 735.24) 67.41 

6.7. Leasing operation    

6.7.1. Ordinary leasing 

It is appropriate, for completeness, to mention briefly an operation which can be 
a convenient investment for a financial company and at the same time a form of 
financing, often preferred by firms to other forms considered in this chapter. 

Let us summarize this operation as follows. A company working in leasing is a 
broker between the owner of an asset or real estate and the lessee firm, in the sense 
that it gives the financial means for the purchase and, maintaining the property of 
the asset, grants its use against payment. For this company the costs are those related 
to the purchase of the asset, while the returns are the payments for the leasing, which 
are called rent and form a periodic annuity. 
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On the opposite side, the lessee company, against the use of the asset, pays a 
periodic rent for the whole length of the contract and also pays an earnest payment, 
usually a multiple of the rent; furthermore the possibility of redemption, i.e. the 
purchase by the lessee of the leased asset, usually at a price strongly reduced and 
prefixed at the beginning of the lease, it is often provided at expiry36.  

There is then the issue of comparing it with the loan operation for purchasing the 
asset. From this comparison follows a problem of choosing between alternative 
loans. In fact, we have to compare, on one side, the purchase of the property of the 
asset using his own means and loaned capital, with the resulting lost profit for the 
self-financing part that was invested at a return rate i1 and the emerging cost for the 
loaned part, at a cost rate i2; and on the other side, the leasing operation that implies 
the payment of advance, periodic rents and the possible final redemption. The 
maintenance expenses, in both cases, are paid by the company that uses the asset. 

The leasing rent cannot be limited only to remuneration, at the contractual per 
period rate i, of the amount S used by the lessor for the purchase, at net for the 
advance and the discounted redemption, because being assets with a limited 
economic life (due to wear, obsolescence, etc), it must take into account an amount 
for the funding of the used capital for the renewal. There is then a situation 
analogous to the American amortization with two coincident rates, where on the 
basis of (5.9) the rent C is given by S(i+ n |i) = S n |i , where S is the net amount 
already specified. Therefore, the rent, if constant and not indexed, is calculated as 
the progressive amortization installment of a loaned principal equal to the 
aforementioned net amount. 

In formulae, if the operation, with a length of n periods, is not indexed and it is 
provided for a value F, an advance A and also a redemption at expiry R, the delayed 
per period rent C if constant37 is obtained from the following relation, justified on 
the basis of the equivalence principle: 

 F = A + C an |i+ R (1+i)-n (6.69) 

                                                 
36  It is suitable to mention briefly the “real estate leasing”. The length is usually long and the 
redemption value has to take into account that the real estate is not subject to the same 
depreciation that other assets or industrial equipment are subject to. In addition, there are the 
taxation problems particular  to such leasing arrangements. 
37 A financial calculator with the keys (n), (i), (pv), (pmt) and (fv) allows for the immediate 
automatic calculation of one of the quantities n, i, (F-A), C, R, given the others, because 
(6.27) can be written: -(F-A) +C an | i +R (1+i)-n = 0. In addition, if  is known, we obtain: F 

= (F-A)/(1- ) ; A = F-(F-A). 
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Using  = A/F (= advance quota) and  = R/F (= redemption quota), from (6.69) 
we find the expression for the periodic rent C38 

 C = F [1 -  -  (1+i)-n] / an |i (6.69') 

If the first m rents are paid at the beginning, they form the advance, then C is 
found from (6.69) using A = mC  and an-m |i   instead of an |i . Therefore 

 
1  (1 ) nF i

C
m an-m|i

 (6.69") 

Exercise 6.12 

1)  The lessor gives a plant, the total cost of which is €24,000, for leasing with 
delayed monthly rents for 5 years and with a redemption equal to the 5% of the cost 
and 

a)  an advance of 8% of the cost; or 
b)  an advance equal to 3 rents. 

Calculate the rent for the two cases in the hypothesis that an annual remuneration 
rate 12-convertible of 9.5% is applied.  

A. In case a) used in (6.28'): F=24000, n=60, =0.08, =0.05 and using months 
as the unit measure for time, the monthly rate is i1/12 = 0.007917 and the rent C  
(that can be found with a financial calculator as in footnote 37) is 

C = 24,000 (1 - 0.08 - 0.05.1.007917-60)/ a60 |0.007917  = 448.02 

In case b), used in (6.27") the previous data and m=3, we obtain39  

C =  24000 (1 - 0.05.1.007917-60)/(3 + a57 |0.007917)  = 477.16 

2) The lessor gives a plant for 3 years, with advance monthly rent, without 
earnest, providing the redemption as 2% of the price and with a clause for a 
decrement of 40% of the rent after 20 month. Calculate the corresponding rents, 
considering that the price of the plant is €16,500 and the nominal rate 12-convertible 
is 11.20%. 

 A. The equivalent monthly rate is 0.009333, the equation to find the rent C 
for the first 20 months is given by 

                                                 
38  Footnote 37 also holds for (6.69'). 
39 It has been agreed that the redemption is paid in the month of the last rent; the length is 
then reduced to 57 months. In this case the rent is: 

C =  24,000 (1 - 0.05.1.007917-57)/(3 + a57 |0.007917) = 476.80 
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-16,500.00 + C ( 36|0.009333a - 0.40 20 / 16|0.009333a  ) + 330.00.1.009333-36 = 0 

from which: C = 610.95. Therefore, the first 20 rents are €610.95 and the following 
16 are €366.57. 

6.7.2. The monetary adjustment in leasing 

In section 6.5, which was dedicated to the adjustment and indexation in the 
amortization of an unshared loan, we considered the remedies to cover the creditor 
from monetary depreciation in a long-term operation. As the leasing can also be 
considered as a pluriennial loan, for this problem the same remedies can be applied, 
then we refer to those, limiting ourselves here to a brief discussion. 

For the phenomenon of the purchase power variation, and in particular of 
depreciation, two remedies are used: 

1) line interest compensation, through a procedure of varying rates that are the 
sum of a fixed real remuneration share ih and a varying share ih of compensation 
nature if it is adjusted to the level of the monetary depreciation rate; 

2) line value compensation, if the same plant value (which is under a real 
financial amortization given the criteria for the calculation of the rent) is indexed 
proportionally to a statistical series of prices representing the interested 
phenomenon.  

6.8. Amortizations of loans shared in securities 

6.8.1. An introduction on the securities 

In the previous chapter we examined methods to manage the remuneration and 
repayments of loans with two contractual parts: lender and borrower. However, 
loans of a large amount to relevant companies frequently occur. Then it is practically 
impossible to realize such operations by only one lender, and therefore many lenders 
will share the debt. 

Such operations are then realized in the following ways: 

1) many private lenders, which give the money against an obligation of 
repayment and a credit security; 

2) brokerage by third party, in the sense that a bank or a group of banks 
formalize the obligations and securities, collect the money in the “stock market” of 
the subscribers of the credit securities (using its own organization through a Stock 
Exchange and its own branches), and give the debt sum in one or more “slices”; 
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3) public guarantees, in the case of loans for public enterprise. 

The stock market offers many possibilities for financial investments, typical or 
not. We will consider here only credit securities for which the principal to be paid 
back is well determined (even if interest can be paid according to varying rates). We 
will then not consider: 

– equity shares, that from the juridical viewpoint are joint ownership stocks; 

– “investment funds” which are prevailingly formed by mixtures of shares and 
bonds, that have risky elements and are sometimes linked to an insurance 
component; 

– values due to rights linked to share exchanges, that have their own specificity 
and autonomy and are traded in the “derivative market”.  

The description of most of these financial products can be found in the second 
part of this book. However, for further information the interested reader can refer to 
specific books. 

A fundamental distinction between credit instruments placed against a shared 
loan between many creditors is that between: 

a) Treasury Bonds (placed by the State) with one maturity; 

b) bonds, which can have different type of redemption. For these, we must make 
a further distinction: 

 b1) bonds with redemption at only one maturity for all creditors; and 

 b2) bonds with redemption at different maturities amongst the creditors. 

If the length of the operation is not longer than one year, the return for the 
investor is obtained through a purchase cost discounted with respect to the 
redemption amount. This cost can depend on the dynamics of the negotiation during 
the “auction” in which the bonds are placed. The financial regime that follows is that 
of the rational discount40 (see Chapter 3).  

If the length of the operation is pluriennial, and n is the number of years, the 
interest (through coupons) with delayed semiannual or annual due date on the basis 
of nominal rate – also termed coupon rate, constant or varying according to a 
prefixed rule – is usually paid. In this case the interest is a form of “detached 
return” of the security. We must distinguish for each security between the issue 
value p and the redemption value c, which we assume coincident with the nominal 

                                                 
40 If 100 is the redemption value of the bond, not considering taxes, the purchase price A is 
linked to the annual rate i and to the days of investment g by the relation: A = 100/(1+ig/360).  
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value on the security (if the last two are different, for financial purposes, only the 
redemption value must be considered):        

– if p<c, we talk about issue at a discount or below par;  

– if p=c, we talk about issue at par;  

– if p>c, we talk about issue at a premium or above par. 

6.8.2. Amortization from the viewpoint of the debtor 

The debtor (issuer) must plan an amortization schedule for the whole debt with 
one of the methods considered before for the unshared loan. The presence of many 
creditors is irrelevant from a financial point of view; there are only the practical 
complications of dividing amongst them the payments for redemptions and interest, 
called coupons. Let us assume 0 as the issue time of the loan and suppose the 
absence of adjustment. Furthermore, let N be the number of issued bonds, each with 
an issue value p and redemption value c, and j the annual coupon rate for the 
computation of delayed interest, that is nominal 2-convertible if the coupons are 
semiannual. 

Given that, in case b1 we can apply the scheme, seen in section 6.1, of one final 
lump-sum at maturity n and periodic payment of interest, dividing both of them 
amongst the issued bonds. Therefore, in this case we can immediately verify that for 
the issuer against the income supply (0,+Np), the amortization consists of the 
outflow supplies: 

– (1,-Ncj) (2,-Ncj) … (n-1,-Ncj) (n,-Nc(1+j)), for annual coupons; 

– (1/2,-Ncj/2) (1,-Ncj/2)  … (n-1/2,-Ncj/2) (n,-Nc(1+j/2)), for semiannual 
coupons. 

In case b2) we can apply, for the issuer, the general scheme of gradual delayed 
amortization seen in section 6.2, fixing the redemption plan, i.e. the number Nh of 
securities to redeem completely at the end of each year h, with the obvious 

constraint: N N hh 1

n
. In fact, a gradual amortization for each bond is 

inconvenient. We can then calculate the numbers  

 Lh N Nkk 1

h
 ;  h = 1,....,n (6.70) 
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which identify the numbers of bonds “alive” soon after the hth gradual redemption, 
i.e. not redeemed at times k  h. For Lh the recursive relation holds 

  Lh  =  Lh-1  - Nh    ;  L0 = N ;  then  Ln = 0 (6.70') 

It is clear that the issuer must also pay the annual interest cj or semiannual cj/2 
on each of the alive bond. Therefore, against the income supply (0,+Np) the 
amortization consists of the outflow supplies: 

– 11( ,    )n
h hh h N c L c j , (annual coupons); 

– 
 1 11 1( ,   / 2) ( 1 2,   / 2)n n

h h hh hh N c L c j h L c j , 

(semiannual coupons). 

To summarize, with annual coupons the installment to be paid by the issuer is  

 Rh Nh c Lh 1 c j   ,   (h = 1....,n) (6.71) 

while for semiannual coupons,  the interest is divided into two equal amounts. 

The one lump-sum redemption of all securities implies a large financial need for 
the issuer at time n, that – if not covered by a previous new bonds issue – can be 
very difficult to realize for a private company without adequate means and 
guarantees, which can also be used to become trusted by the creditor; therefore form 
b1 is more adequate for Treasury Bonds or public securities. On the contrary, form 
b2 allows for a gradual repayment, by choosing in a suitable way the sequence {Nh} 
in relation to the incomes following the investments financed by such loan, and it is 
suitable for loans to companies with private structure.  

6.8.3. Amortization from the point of view of the bondholder 

Referring to the bondholders-creditors, we need to distinguish case b1 from case 
b2 and the following considerations hold. 

In case b1 the number of creditors does not change the amortization procedure, in 
the sense that for the bondholder of each of the N bonds the amortization is with one 
final lump-sum at maturity n, the same for all bondholders, with periodic payment of 
interest on the basis of the same parameters. The financial operation is obtained 
from the one described in section 6.6.2 for the issuer dividing it into N equal parts 
(with administrative complications due to the large number of counterparts41) and 
                                                 
41 Such complications disappear when the bond loan is entirely subscribed by a large 
company, public or private. In such cases, the operation is equivalent to an unshared loan, 
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changing the sign, i.e. dividing by -N. Then each bond at the issue date42, against the 
payment of the amount p, must receive the supplies:  

– (1,cj) (2,cj) … (n-1,cj) (n,c(1+j)), for annual coupon;   

– (1/2,cj/2) (1,cj/2) … (n-1/2,cj/2) (n,c(1+j/2)), from semiannual coupon. 

The case b2, usual for pluriennial bonds of large amount, which are sold at the 
inception to a great number of private investors, implies for the bondholder of each 
of the N bonds an amortization with one final lump-sum redemption, but with 
staggered redemption dates. The rate evolution on the stock market is the cause of a 
continuous and varying spread between the current rate, for reinvestment after 
redemption, and the nominal one on the current loan. Therefore, at time h, according 
to the sign of the spread, all (if the spread is positive) or none (if the spread is 
negative) of the Lh-1 residual bondholder are interested to be included amongst the 
Nh redeemed. To avoid complications and to obtain the fairness among the creditors 
with a symmetric situation between the residual bondholders, the system of 
amortization by drawing is common, in the sense that the repayment schedule 
becomes a drawing schedule to concretely find at time h the Nh bonds (simple, i.e. 
not considering possible grouping in multiple bonds). The bonds subject to this type 
of management are termed drawing bonds. 

In this form, while from the viewpoint of the issuer the financial operation is 
certain, from the point of view of the bondholder for each security we have a 
stochastic maturity, then the amortization cash-flow is stochastic in length, with one 
lump-sum redemption and periodic (annual or semiannual) inflow of interest. 

6.8.4. Drawing probability and mean life  

Proceeding with the consideration of hypothesis b2 that implies for the 
bondholder the randomness due to the drawable bond system for redemptions, it is 
appropriate to find the drawing probability at a given integer time h  n. For reasons 
of symmetry the probability, valuated at issue date, of drawing a bond at time h (i.e. 
of a life of h years from the issue) can be assumed equal to Nh/N, ratio of bonds 
issued that are redeemed after h years, while the probability that a bond still not 

                                                                                                                   
where bonds are only used for tax advantages and the possibility of placing the bonds in the 
exchange market. Another form that simplifies the loan amortization is that, which is widely 
applied in mature economies, of the purchase of their own bonds on the exchange market, 
which is convenient when the current cost rate is lower than the loan rate. 
42 If the bondholder is incoming, buying the security at integer time r (simplifying hypothesis 
which ignores here the “day-by-day interest”) at price pr and if the bondholder waits for the 
maturity without selling, the inflow operation is for him:  

– (r+1, cj) (r+2, cj) … (n-1, cj) (n, c(1+j)), with annual coupons; 

– (r+1/2, cj/2) (r+1, cj/2) … (n-1/2, cj/2) (n, c(1+j/2)), with semiannual coupons. 



Loan Amortization and Funding Methods     273 

drawn at time r has a residual life of h years can be assumed equal to Nr+h/Lr, the 
ratio of residual bonds at time r that are redeemed after other h years. 

It is also interesting to consider, in order to summarize with just one number the 
length of the investment for the bondholder as it occurs in the case of certain 
maturity, the mean life for the generic bond of a given loan43. 

We can calculate the mean life at issue date as a weighted arithmetic average of 
the lengths, expressed by the formula 

  e0 h
Nh

Nh 1

n  (6.72) 

It is also useful to evaluate, in the case of purchase or assignment r years after 
the issue date, the variation of residual mean life of a bond still not drawn at time r, 
expressed by 

 er h
Nr h

Lr
h 1

n r  (6.72') 

Example 6.5 

Let us consider an amortization for a bond loan, gradual for the issuer and then 
with a drawing plan for the bondholder, issued at a discount. Let us take, with 
amounts in €: 

– p  = 1,760   = issue value; 

– c  = 2,000   = nominal and redemption value; 

– j  =  6.2%   = annual coupon rate; 

– N = 10,000   = number of issued bonds; 

– n =  5  = length of the loan; 
– {Nh} = {1,500, 1,800, 2,500, 1,600, 2,600} = draws plan. 

It follows that the number of residual bonds after each draw is: L1 = 8,500, L2 = 
6,700, L3 = 4,200, L4 = 2,600 and L5 = 0. The inflow for the issuer at 0 is 
17,600,000 gross of inflow costs, while the whole debt is €20million, not 
considering the management costs.  

With an annual coupon, their value is €124.00 and the annual installments for the 
payment to the creditor are: 

                                                 
43 The bond mean life is a concept analogous to the mean life of a person, valuated at his 
birthday, for which mortality is measured by means of a demographic table. In probabilistic 
terms, the bond mean life is the expected value of its random length. In fact, (6.72) expresses 
it as the ratio between the whole life length of all bonds, according to the redemption 
schedule, and the numbers of issued bonds. 
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 R1 = 2,000 (1,500 + 0.062.10000) = 4,240,000.00; 

 R2 = 2,000 (1,800 + 0.062. 8,500) = 4,654,000.00; 

 R3 = 2,000 (2,500 + 0.062. 6,700) = 5,830,000.00; 

 R4 = 2,000 (1,600 + 0.062. 4,200) = 3,720,000.00; 

 R5 = 2,000 (2,600 + 0.062. 2,600) = 4,240,000.00. 

With a semiannual coupon, their value is €62.00 and the semiannual installments 
for the payment to the creditor are: 

 R1/2  = 2,000 (0.031.10,000)  =   620,000.00; 

 R1  = 2,000 (0.031.10,000 + 1,500)  =  3,620,000.00;  

 R3/2  = 2,000 (0.031. 8,500)  =   527,000.00; 

 R2  = 2,000 (0.031. 8,500 + 1,800)  =   4,127,000.00;  

 R5/2  = 2,000 (0.031.6,700)  =    415,400.00; 

 R3 = 2,000 (0.031.6,700 + 2,500)  =   5,015,400.00; 

 R7/2  = 2,000 (0.031.4,200)  =    260,400.00; 

  R4 = 2,000 (0.031.4,200 + 1,600)  =   3,460,400.00; 

 R9/2  = 2,000 (0.031.2,600)  =    161,200.00; 

 R5 = 2,000 (0.031.2,600 + 2,600)  =    5,361,200.00 

The mean life at the issue date, due to (6.72), is 3.2 years = 2y+2m+12d, while 
the residual mean life at time 3, due to (6.72'), is 1.619 years = 1y+7m+13d.  

6.8.5. Adjustable rate bonds, indexed bonds and convertible bonds  

Introduction 

Modern capitalistic economies are characterized by a strong dynamism, by a 
wide variety of technical schemes for investments also by monetary systems, which 
are subject to variations of the purchasing power from which the investors must 
protect himself. Thus, even the management of shared loans, as that of unshared 
loans, considered in sections 6.2 and 6.3, is subject to adjustments and variations 
that make them more interesting for investors. 

The listing and description of such investments would be too long if we wanted  
to consider all the modalities that sometimes have a very short life, because due to 
needs which are not valid any more. 
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It is then sufficient to briefly consider a few types, general and consolidated, 
which are widely applied. 

Bonds with adjustable rate 

As for the unshared loans, the issue of bonds can provide, as safeguard against 
inflation or better adjustment of the investment to the evolving market conditions, 
for an adjustable nominal rate, according to an appropriate linking rule to external 
parameters that allow not only the recovering of inflation and/or the adjustment due 
to the market measured at the issue date, but also during the time towards maturity. 

We can then provide in the previous formulae for the substitution of the fixed 
rate i with a varying rate i(h) with current year h, and then adapt all the results. 

Indexed bonds 

Due to the requirement of protection against inflation, we can prefer, for a better 
recovery both on interest and principal, to leave the bond rate to a real return level 
and make the nominal value c varying and adjustable substituting it in the previous 
developments, both for redemption and for the calculation of semiannual or annual 
interest, with an amount c(h) varying with the current year h, indexed proportionally 
to an appropriate statistical series, for example to the consumer price index. 

A more detailed formulation on the valuation of updated rates and indexed bonds 
will be given in section 6.9.4. 

Convertible bonds 

Convertible bonds are more complex and require a more in-depth discussion. 

We can limit ourselves, here, by saying that a firm that wants to increase its 
capital, can initially collect money in the loan market as credit capital leaving the 
possibility to the subscribers – with appropriate limits and according to prefixed 
exchange ratios – to convert, in a given temporal interval, the credit capital into 
risky capital. In this way they become shareholders, then co-owners and partners in 
the enterprise. This is due to a number of reasons of convenience, also tax reasons, 
that allows the redemption of the debt by means of compensation with capital 
increasing. 

6.8.6. Rule variations in bond loans 

Bond loans often provide for variations that modify the cost and return 
parameters and that must then be taken into account. Leaving to the reader the easy 
calculation of the financial effect of such variations, we limit ourselves here to 
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listing the most frequently used variations, warning that it is almost impossible to 
give a complete view of this topic. 

1) Redemption value higher than nominal value 
This is an additional premium and higher cost for the debtor. To calculate it, it is 

enough to take into account this redemption price, no longer the nominal value.  

2) “All inclusive” bonds with premium  
For such bonds, there is  no payment of interest in the drawn year. Our formulae 

are adapted to this case decreasing the redemption value by the amount of the 
coupon. 

3) Bonds with premium 
A total premium amount P(h) can be provided for bonds drawn at year h. The 

debtor must take them into account adding C to Nhc while for the bondholder the 
redemption value c is on average increased by P(h)/Nh. 

4) Bonds with incorporated interest (= full accumulation) 
The loan can provide for the absence of coupons and a redemption value 

increasing with time, together with interest. It is obvious that the return for the 
different length h is found by considering the redemption value as an accumulated 
value after h years of the purchase price. 

5) Bonds with pre-amortization 
It can happen that there are no redemptions for the first h years, i.e. N1 = N2 = ... 

= Nh = 0. In this case, not having redemptions, the cost of interest for the debtor 
concerns all the issued bonds for the whole length of the pre-amortization. 

6.9. Valuation in shared loans 

6.9.1. Introduction 

In section 6.8 we examined, from an objective point of view, the problem of 
management and amortization of loans shared in bonds. In this section 6.9 we will 
consider the problem of subjective valuation, made at inception or during the loan 
life, of the residual rights connected to owning the bonds, from the point of view of 
the creditor bondholder, the debtor (issuer) and a potential buyer. The logic is then 
that behind Makeham’s formula and the more convenient choice between alternative 
investments on the basis of comparison rates fixed by the decision-maker. 

We limit ourselves to the case of gradual amortization of a bond loan that, as we 
have seen, implies a pluriennial repayment plan by means of draws and randomness 
for the bondholder (but not for the issuer) of the values, and also of the usufructs and 
bare ownerships. Also for the valuation this is the more interesting case that gives 
rise to higher complexity. 
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Indeed, if the issue is not at par, only ex-post, after the draw, it is possible for the 
investor to calculate the effective return exactly44. In fact, the difference (positive or 
negative) c-p between return at redemption and purchasing cost is a “capital gain” or 
“capital loss”, i.e. an “incorporated” return component that, from a previous point of 
view, is gained (or lost) in a random number of years T, where (c p) /(pT ), i.e. the 
intensity, is also random. It follows that the IRR of the given bond investment is 
random. We will consider, for valuations and choices, an appropriate functional 
average, called the ex-ante mean rate of return for the bond, coinciding with j for at 
par issue.  

In the not at par issues we can highlight the immediate rate of return or current 
yield, given by cj/p, that measures the return of the investment p given by the 
coupon, but not considering the capital gain or loss45.  

Everything will be clarified in what follows, starting from the case of a bond 
with a given maturity. 

6.9.2. Valuation of bonds with given maturity 

Let us consider first the model that follows from the hypothesis of certainty of 
the length, i.e. assuming that the bond has a given maturity. This can occur: 

a) if all the bonds have a common maturity. This is case b1 of amortization with 
one lump-sum redemption, where for both parties length and returns are certain; 

b) only for the bonds that will be redeemed at a given maturity, in the drawing 
bond case.  

Valuing from the bondholder point of view, let us consider the bonds that will be 
called after s years from the issue date, i.e. all in case a) with common maturity s, or 
only the Ns , (1 s n), defined in case b). 

With the usual symbols, in the case of annual coupons, with i being the effective 
delayed annual evaluation rate (subjectively chosen according to the market 
                                                 
44 We highlight that if the issue is at par, the randomness of the length does not imply the 
randomness of the IRR, that coincides with the coupon rate, as it is obvious for the financial 
equivalence principle. Analytically we can deduce that the issue at par is a necessary and 
sufficient condition such that IRR = j. Proof: necessity: if IRR = j, let T be the random length, 
b the issue price and c j being the coupon, must be: - b  + c j [1 - (1+j)-T]/j + c (1+j)-T  = 0  

T, then b = c . Proof: sufficiency. If the issue is at par, - c + c j[1-(1+x) -T]/x + c(1+x)-T  = 0, 
where x = IRR, then: cj[1-(1+x)-T]/x  =  c[1- (1+x)-T] ; j/x = 1, i.e.  x= j.   
45 In the not at par issues the immediate rate is obviously always between the coupon rate and 
the mean rate (or certain rate) of effective return. In at par issues, all the aforesaid rates  
coincide. 
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behavior and to the returns of alternative investments), indicating with W0(i) the 
valuation at issue date (in r=0) on the basis of the expected encashment of the 
bondholder, dependent on the return rate i, results in    

 W0(i)  =   c j as |i+ c (1 + i)-s (6.73)  

(independent of the issue date because we adopted a uniform financial law). The 
symbol W means that this value coincides with the pro-reserve evaluated just after 
the purchase. 

Assuming a market logic (a topic which will be more fully developed in Chapter 
7), we indicate with z(s) the purchase price of the bond at issue date (z(s)<c if at a 
discount, z(s)=c if at par, z(s)>c  if at a premium). Thus, solution x, existing and 
unique, of the equation in i 

  c j as |i  + c (1 + i)-s  =  z(s) (6.74) 

(that, due to (6.73), expresses the equality between the value V0(i) and the price z(s) 

at time 0) is the IRR, the rate to which the mean return rate is taken back, given that 
in the bond investment with certain length the return rate is not random but certain, 
even with not at par issues. 

Given that W0(i) is a decreasing function of i and that i=j if the bond is issued at 
par, it is obvious that in the at discount case the solution for i in (6.74) is x > j, while 
in the at premium case the solution for i in (6.74) is x < j. 

Constraint (6.74) between price z(s) and IRR in case of a given maturity acts 
biunivocally: given the wanted IRR, we obtain the corresponding issue price; and 
conversely, given the price z(s), we find the IRR as rate x that makes fair the 
operation to pay z(s) and to cash s annual coupon  cj and the redemption c after s 
years. Clearly, at fixed c and j, the IRR is a decreasing function of z(s). 

In (6.74), using the solution value x instead of i, then z(s) is obviously also the 
value W0(x) of the bond at rate x, while the two addenda at the left side form, 
respectively, the usufruct and bare ownership of the bond at rate x. 

If, instead, at issue date the valuation is made at an intermediate time (integer) 
r>0, then z(s), to be written z(s-r), becomes the “forward” in r of the security on the 
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exchange market and it is enough to substitute the residual life s-r instead of 
maturity s46. 

With a  semiannual coupon, it is enough to consider in (6.74) the fractional 

annuity as |x
(2) and make the appropriate changes. 

Example 6.6 

For valuations connected to the return, it is enough to consider a single bond, 
even better a virtual share, putting the nominal value (that we suppose equal to the 
redemption value) equal to 100. Let us consider a security with certain maturity, 
which pays semiannual coupons at the nominal rate 7% (semiannual convertible) 
and is redeemed after 8 years. Let us assume the time unit is a half-year and let us 
put the time origin 0 at purchase (at issue date or a following one in the market of 
issued securities) of this share; then put in 16 the redemption time. 

The purchase price P that assures an annual effective return of 6% (being i2 = 

1.06  - 1 = 0.029563 the semiannual rate equivalent to 6% annually) is given by 

P = 3.5 (1 - 1.029563-16)/0.029563 + 100 .1.029563-16  = 106.85 

then the purchase is  “at premium”, given that the annual effective return rate of 6% 
below the coupon annual effective rate, equal to 7.1225% corresponding to a 
nominal rate of 7%. The usufruct is the first addend of the right side, whose value is 
44.11. The bare ownership is the second addend, whose value is 62.74. 

Example 6.7 

Let us consider a bond with certain maturity and the following data: nominal 
value and also redemption value at 9 years after the purchase = 100; annual coupons 
at rate of 6%; purchase price  = 94.65, then the bond is “at discount”. The current 
yield is by definition: 6/94.65 = 6.3391%. The IRR, that measures the effective 
return with the “capital gain”, is solution x of the equation in i 

    94.65 +  6 [1- (1 + i)-9 ] /i +  100 (1 + i)-9  =  0  

                                                 
46 Precisely the pro-reserve Wr in r > 0, dependent on i, is obtained from the right side of 
(6.73), using s-r instead of s. A simple calculation shows that the following recursive between 
subsequent values of Wr , dependent on the IRR of the security: Wr  = (1+i)-1(cj+Wr+1 ) with 
Ws= C (thus putting the redemption soon after time s). In fact, in r < s the bond with value Wr  
gives right after one year, accumulating at rate i, to the coupon cj and to further rights 
valuated Wr+1 at time r+1. Such a simple formula is useful to calculate, using Excel, the 
sequence of residual values at integer times between 0 and s. From another point of view Wr  
is  in r = 0 the spot price at issue date and in r > 0 the forward price, which are found from 
the right side of (6.73), in biunivocal correspondence with the value I = x = IRR. 
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It is found with appropriate methods (it is sufficient a financial calculator) to be: 

IRR  = 6.8147% >  6.3391% (= current yield) >  6% (= coupon rate) 

6.9.3. Valuation of drawing bonds 

inlet us consider case b2 with repayments in n years randomly, according to a 
draw of N1,.., Nn drawing bonds in the years 1,…, n.  Thus after the hth draw the 
number of bonds Lh is given by (6.70). Therefore, extending the considerations of 
section 6.9.2, given the symmetry between the securities, the issue price z is found to 
equal the price N z of the whole of the bond issue to the sum of the present values, 
calculated according to the prefixed IRR x, of the number of bonds which have to 
redeem at different maturities s, the number of which Ns is previously known.  

Thus, the following relation holds 

   N z  Ns c j as |xs 1
n

Ns c (1 x) s
s 1
n

 (6.75) 

i.e. 

 z Ns z(s) / Ns 1
n

 (6.75')  

that expresses z as the weighted mean of z(s) with weights Ns/N, which express the 
probabilities, valued at issue date, of draw after s years. 

In (6.75) the 1st addendum of the right side expresses the usufruct and the 2nd 
addendum the bare ownership, referred to the whole of the N bond issue. Therefore, 
we find, dividing by N, the mean usufruct u0 and the mean bare ownership np0 of a 
single bond at time 0. 

Equation (6.75), with given z and unknown x, is also the equation that gives 
(univocally for the algebraic properties of (6.75)) the IRR as the mean effective yield 
rate47 of the investment at price z. Instead, the ex-post yield rate, in the case of a 
draw after s years, is found by solving (6.75) with respect to the unknown rate x, 
with the value of s corresponding to the verified time of draw.  

                                                 
47 We must highlight that the mean effective yield rate is not the real profit rate for the 
investor in a bond, taking into account incorporated revenues and costs; this is the ex-post 
rate, valuable only after the bond call. In fact, the mean effective yield rate is a suitable 
functional mean of feasible ex-post rates owing to drawing. 
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If the valuation is performed at time h  0, in (6.75') it is enough to add from 1 to 
n-h and substitute Nh+s/Lh to Ns/N. In this way the mean values zh, the mean 
usufructs uh and the bare ownerships nph for each bond still alive at time h are 
obtained, resulting in 
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Example 6.8  

Let us value the prices, the mean usufructs and bare ownerships, at issue and 
after 2 years, of the drawing bonds loan, the data of which are: 

n = 5; N = 1,000; c = €5,000; j = 5.60%; x = 6.14%; 
N1 = 150; N2 = 170; N3 = 200; N4 = 230; N5 = 250. 

To apply the resolving formulae we build the following table. 

s as |x  (1 x) s  z(s)  N s / N  Ls  

 (1) (2) (3) (4) (5) 
1 0.942152 0.942152 4,974.56 0.15 850 
2 1.829802 0.887650 4,950.59 0.17 680 
3 2.666103 0.836301 4,928.01 0,20 480 
4 3.454026 0.787923 4,906.74 0.23 250 
5 4.196369 0.742343 4,886.70 0.25    0 

Table 6.18. Elements for calculating values, usufructs and bare-ownerships 

– The price z0 at issue, corresponding to IRR 6.14%, is the arithmetic weighted 

mean of values   z(s), obtainable as a scalar product of vectors (= component product 
sum) given by columns 3 and 4: z0  = €4,923.61;  

– We obtain the mean usufruct at issue by scalar product of column vectors 1 and 
(4), then multiplying by  c j = 280: u0  = €792.16; 

– We obtain the mean bare ownership at issue by the scalar product of column 
vectors 2 and 4, then multiplying by  c = 5,000: np0  = €4,131.45. 

u0 + np0 =  €4,923.61 gives the value z
0 

in another way. 

Valuing after 2nd refund (r=2), with residual time length of the loan = 3, we have 
to repeat the procedures of calculation already shown, but limit ourselves to the 
averages of the first three elements of columns 1 and 2, taking as weights the 
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redemption percentages N3/L2 = 200/680 = 0.294118; N4/L2 = 230/680 = 0.338235; 
N5/L2 = 250/680 = 0.367647. We obtain:  

u2 = 525.33 ; np2 = 4,424.01 ; z2 = u2+np2 = 4,949.34. 

Particular case: constant principal repayments 

If N is a multiple of n, we can choose Nr = const. = N/n. By introducing this 
value in the 3rd equation into (6.76), we find  
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     48 (6.76') 

Exercise 6.13 

Let us consider a bond loan of €750,000 shared into 750 bonds redeemable at 
nominal value according to draw, with constant principal repayments and annual 
coupons, with the following parameters: 

– length in years  n = 10 

– coupon rate    j  =  5.5% 

– mean effective yield rate x =  6% 

calculate for one bond the issue price and the forward price after the 3rd draw, which 
realize the assigned yield at 6%. 

A. The unitary result does not depend on the number of issued bonds. Applying 
(6.76'), the following is obtained: 

at issue date (h=0):      z0

1000
    

7.3600871

10
1

7.3600871

10

5.5

6.0
  

       z0  = 1000 (0.7360087 + 0.2639913. 0.9166667) = 978.0007 

after 3 years (h=3):      z3

1000
    

5.5823814

7
1

5.5823814

7

5.5

6.0
  

       z3  = 1000 (0.7974831 + 0.2025169. 0.9166667) = 983.1236 

 

                                                 
48 Equation (6.76') shows that zh/c  is a weighted mean between 1 and j/x with weights 
varying with h. Therefore zh<c  iff  j<x (at discount) while zh>c iff  j>x (at premium). 
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Particular case: debtor installments (almost) constant 

The redemption of a bond loan can also be made with constant annual delayed 
payments for the issuer on the model of the French amortization. Therefore a 
constant installment for the loan of the type R = Nc/ an |j  is to be valued. Then, the 
value of redemption of each security being constant c, both the total redemption 
amount at time r and the numbers Nr of redeemed bonds have to increase in 
geometric progression with ratio (1+j). Thus, it must be Nr = k(1+j)r and from  

Nr N
r 1

n
follows: 

k = N n| j       ;       Nr =  N n| j  (1+j)r   

to substitute in (6.76) for h=0. An easy calculation leads to the formula 

 
z0

c

j

x
(1

j

x
)np0  (6.76")  

where in this case the total redemption shares discounted are constant and then: np0 

= nc n| j , highlighting that z0/c is a weighted mean between 1 and np0. The changes 

to make the calculation for zh with h>0 are obvious.  

In addition, we have to observe that the values Nr previously obtained are always 
integer. Therefore, this scheme must be corrected by approximating for each year 
the theoretical number Nr, by its floor and transferring to the following year in 
acc/repayments the accumulated value of the not amount used, then valuing the new 
number of bonds to redeem, always rounding off at integer, and carrying on this way 
till the term.49  

Exercise 6.14 

Let us consider the bond loan with data of Exercise 6.13 but ruled by constant 
installments. Not considering the rounding off to obtain integer numbers, calculate 
such theoretically drawn numbers and also the issue price of one bond. 

 A. Using the formulae discussed above, as 10|0.055  = 0.073619, we find: 

N1 = 750.0.073619.1.055 = 58.250827;  N2 = 1.055.N1 = 61.454622; 
N3 = 1.055 N2 = 64.834626;  N4 = 1.055 N3 = 68.400531; 
N5 = 1.055 N4 = 72.162560;  N6 = 1.055 N5 = 76.131501; 
N7 = 1.055.N6 = 80.318733;  N8 = 1.055.N7 = 84.736263; 
N9 = 1.055.N8 = 89.396758;  N10 = 1.055.N9 = 94.313580. 

                                                 
49 It is obvious that this rounding operation changes the mean yield rate and the ex-post rates 
very little with respect to the calculated ones according to the theoretical redemption with 
exactly constant installments. 
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To check, adding the numbers above, we obtain 750.    

As 0 10|0.055np nc  = 10.1000.0.073619 = 736.19, the issue value is 

z0  = 1000 (0.916667 + 0.083333.0.73619) = 978.02. 

The approach for management years 

Equation (6.76) is obtained using a total direct valuation but it is also possible to 
use the management years approach, that offers the advantage of analyzing the 
temporal development and easily enables a generalization for the hypothesis of 
varying rate and adjustment of the values. 

Proceeding for management years, we find for the year h+s the total amount for 
the paid coupon by the debtor as interest and for redemptions as principal. This 
amount originates from the Lh bonds circulating at time h (or from the N bonds 
issued, if h=0). If it is divided by Lh we obtain for symmetry reasons the mean 
amount s years after h for the generic purchased bond. Then, the value zh assigned to 
each bond, on the basis of an appropriate valuation rate x, is given by  

 
    
zh =  

1

Lh

(Lh s 1ci Nh sc)(1 x) s
s 1

n h  (6.77) 

It is easy to show algebraically the equivalence between the last equation in 
(6.76) and (6.77). Furthermore in (6.77) Lh+s-1/Lh and Nh+s/Lh are respectively the 
probabilities to be drawn for bonds not drawn till h, of no drawing for another s-1 
years and to be drawn in the following year. Given that Lh+s-1 =  Lh+s + Nh+s, the 
total amount of year s can be written as Lh+s-1ci + Nh+sc(1+i), distinguishing for the 
circulating bonds at the beginning of the year h+s the amount for interest for the 
bonds not drawn in the year and the amount for interest and redemptions for the 
drawn bonds50. 

                                                 
50 Let us find here a relevant property for zh. Indicating with c* = ci/x the capital that 
reproduces the annual coupon given at rate x and resulting for equivalence 

 (Lh s 1c * x N h sc*)(1 x) s
s 1
n h

c* Lh
,  

(6.77) can be written as 

zh c * (c c*) Nh s (1 x) s /Lhs 1
n h , 

where, with an obvious financial interpretation, the result of  is: 0< <1. Therefore, zh is 
always between c* and c.  
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If we use the delayed semiannual interest coupon, the same correction factor 
x / 2( 1 x 1) , that transforms the value of the delayed constant annual annuity in 
to that of the semiannual fractional annuity (see Chapter 5), must be introduced in 
the valuation. 

By introducing a direct argument, if we are using a semiannual coupon we have 
to replace ci by the accumulated value at the year’s end at rate x of the two 
semiannual coupon ci/2,  i.e. the value cix[ 1 x 1] /2.         

In practice, with a semiannual coupon it is enough to substitute in (6.77) the 
annual coupon rate i for its transformed one i' ix / 2( 1 x 1) .  

Recursive relation of a bond value at fixed coupon rate 

In addition, for the valuation of bond loans with drawing redemption at any rate 
x* we can consider the dynamic aspect on the basis of the management years 
approach. Using the symbols already defined, the relation51 between subsequent 
values zh valued at rate x is as follows: 

   Lhzh (1 x) 1(cNh 1 cjLh zh 1Lh 1) ,   (h = 0,...,n -1) (6.78) 

Equation (6.78) extends, to the loans shared in bonds, the recursive relation 
examined in section 6.2 for the unshared loan and is based on a principle of 
preserving the value in equilibrium conditions, expressing the equality between the 
valuation of residual securities at time h, and the sum of the differently used amount 
of such securities in h+1, soon after the (h+1)th draw, valued in h. In fact, 
considering that Nh+1+Lh+1 = Lh, at the right side of (6.78) are added for the total 
loan: 1) the payment in principal for the redemption of drawing bonds in h+1; 2) the 
payments of interest for the living bonds between h and h+1; 3) the valuation of 
residual bonds in h+1. 

Mathematical life and Achard’s formula 

Let us define mathematical life at time r and rate x the exponential mean of the 
possible residual life length of a bond still not drawn in r, on the basis of the 
repayment plan; this indicated by emr , is implicitly defined by 

 (1 x) emr  r sN

rL
(1 x) s

s 1

n r
 (6.79)  

                                                 
51 The considered recursive relation, concerning random values due to the call, shows an 
analogy with the known Fouret’s equation about life insurance theory.  
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Defining as |x = (1 - (1+x)-s)/x as well for non-integer times, the mean value zr 
taken from (6.76), given (6.77), can be transformed in 

 zr =  c j aem r |x  + c (1 + x) –emr (6.80)  

The right side of (6.80) can be split into mean usufruct and mean bare 
ownership, i.e.  ur = c j aem r |x  ; npr = c (1 + x) -emr. Therefore, the mean valuation 

of usufruct and bare ownership, in uncertainty conditions following the repayment 
plan, are equivalent to the certain ones with length emr. In other words, the mean 
financial valuation for random maturity is equivalent to the one that would be 
obtained with a maturity certain at time r+emr, i.e. after a time equal to the 
mathematical life. 

For the expression of ur and npr taken from (6.76), the mean usufruct of a bond 
with nominal and redemption value c can be expressed according to the mean bare 
ownership in the form: 

 r

 j
c- p

xru n  (6.81) 

that is Achard’s formula52. It particularizes the Maheham’s formula on a single 
bond, given that, as the amortization with one lump-sum redemption at maturity, the 
intermediate outstanding balances remains always equal to the redemption value c. 

6.9.4. Bond loan with varying rate or values adjusted in time  

It is known that, to face monetary variations or to adjust pluriennial operations to 
the changing of market conditions, it is possible to adopt in the management of 
loans, varying coupon interest rates or indexed outstanding loan balance. 

Sometimes such schemes are also adopted in bond loans. In particular, for the 
valuation considered in this chapter, it is possible to formalize such a scheme if we 
use the approach for management years described in section 6.9.3. 

Let us refer to formula (6.77) and observe that if, due to the varying rates and/or 
to indexing of values, we assume a sequence of coupon interest rates i

(s)
 and/or a 

                                                 
52 The proof follows from: 

 
1 s=

   j 1 (1 ) /
n r

sr s

s r

N
c j a c x x

L s |x
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sequence of redemption values c(s) corresponding to years s = 1,..., n–h starting 
from year h 0, then it is enough to replace in (6.77) for each time h+s the coupon 
constant rate i by the varying rate i(s)  and/or the constant unitary debt c by the 
indexed debt c(s) . Considering that usually the indexing of debt is used as an 
alternative to the variation of coupon rate, the following formulae, that at an 
appropriate valuation rate x give the pro-reserve of the total outstanding balance at 
time h 0, hold. In the case of varying coupon rate the pro-reserve is   

 Wh =  (Lh s 1ci (s) Nh sc)(1 x) s
s 1

n h
 (6.77')

 

while in the case of indexing of the outstanding balance the pro-reserve is 

Wh =  (Lh s 1c
(s)i Nh sc

(s))(1 x) s
s 1

n h

                (6.77'') 

 


